Phase Relations in the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ System in the Solid State. The Crystal Structure of AlVO_{4}

Grażyna Dąbrowska, Piotr Tabero, and Maria Kurzawa

(Submitted August 13, 2008; in revised form February 13, 2009)

Abstract

Phase relations in the ternary oxide system $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ in the solid state in air have been investigated by using the x-ray diffraction (XRD) and differential thermal analysis/thermogravimetric (DTA/TG) methods. It was confirmed that in the subsolidus area of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathbf{V}_{2} \mathrm{O}_{5}$ MoO_{3} system, there exist seven phases, that is $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~V}_{2} \mathrm{O}_{5(\text { s.s. })}, \mathrm{MoO}_{3}, \mathrm{AlVO}_{4}, \mathrm{Al}_{\mathbf{2}}\left(\mathrm{MoO}_{4}\right)_{3}$, AIVMoO ${ }_{7}$, and $\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}$. Seven fields, in which particular phases coexist at equilibrium, were isolated. The crystal structure of AlVO_{4} has been refined from x-ray powder diffraction data. Its space group is triclinic, $P 1, Z=6$, with $a=0.65323(1) \mathrm{nm}, b=0.77498(2) \mathrm{nm}, c=0.91233(3)$ $\mathrm{nm}, \alpha=96.175(2)^{\circ}, \beta=107.234(3)^{\circ}, \gamma=101.404(3)^{\circ}, V=0.42555 \mathrm{~nm}^{3}$. The crystal structure of the compound is isotypic with FeVO_{4}. Infrared (IR) spectra of AlVO_{4} and FeVO_{4} are compared.

Keywords aluminum orthovanadate(V), DTA, IR, phase equilibria, XRD

1. Introduction

The $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ system is the object of in-depth studies, mainly because of the catalytic properties of its components as well as of the compounds occurring in binary systems constituting the ternary system. ${ }^{[1-6]}$ It can be seen from the literature data that the $\mathrm{V}_{2} \mathrm{O}_{5}$ and MoO_{3} oxides, pure or acting as components of mixtures, are employed in industry as active and selective catalysts of oxidation processes, such as the oxidation of SO_{2} to SO_{3}, benzene to maleate anhydride, methanol to formaldehyde, butene to maleate anhydride and naphthalene, and propylene to acrylaldehyde. ${ }^{[1,2]} \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ often acts as a solid support of these catalysts. ${ }^{[3,4]}$ Moreover, the phases existing in the binary systems, that is, the MoO_{3} solid solution in $\mathrm{V}_{2} \mathrm{O}_{5}, \mathrm{~V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}$, and $\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$, exhibit interesting catalytic properties. ${ }^{[5,6]}$

In order to get comprehensive knowledge on mechanisms of the catalytic processes involving some oxide contacts, the information about the solid phases, on the surface of which the elementary catalytic act occurs, is vital. This information can be gained by studying the composition and the type of phases being formed in the system that describes a given catalyst, as well as by determining their structure and properties. In addition, one more necessary research is an investigation of phase relations occurring in such systems under specific thermal conditions. Hence, it

[^0]was concluded that a study of phase equilibria established in the system of catalytically active oxides $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5^{-}}$ MoO_{3}, in the entire range of concentration of the components up to $1000{ }^{\circ} \mathrm{C}$, is justified.

Another important aspect of the authors' work was an attempt to determine the structure of AlVO_{4} more precisely. Obtaining a monocrystal of this compound using conventional methods is hindered by significant difficulties resulting from the fact that this compound melts incongruently. Therefore, in order to refine the AlVO_{4} structure, the Rietveld method was applied; the Rietveld method requires only the knowledge of the x-ray powder diffraction pattern of a polycrystalline substance.

1.1 Earlier Studies

A review of the literature data has demonstrated that the oxide components of the studied system are the subject of numerous and comprehensive studies, where their properties, structure, and practical applications are taken into consideration. The binary systems of the studied ternary system, similarly to the oxides, have extensive literature. After having considered the reviewed literature, it was concluded that the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ system is the most widely investigated. ${ }^{[6-14]}$ The remaining binary systems do not have such extensive literature, and the information is often contradictory and ambiguous. ${ }^{[15-31]}$

$1.2 \mathrm{~V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ System

The components of this system constitute a substitution solid solution of MoO_{3} in $\mathrm{V}_{2} \mathrm{O}_{5}$ in accordance with:

$$
\begin{align*}
& (1-x / 2) \mathrm{V}_{2} \mathrm{O}_{5(\mathrm{~s})}+x \mathrm{MoO}_{3(\mathrm{~s})} \\
& \quad=\mathrm{V}_{2-2 x}^{\mathrm{V}} \mathrm{~V}_{x}^{\mathrm{IV}} \mathrm{Mo}_{x} \mathrm{O}_{5(\mathrm{s.s.})}+x / 4 \mathrm{O}_{2(\mathrm{~g})} \tag{Eq1}
\end{align*}
$$

The redundant positive charge is compensated for by reduction of the V^{5+} ions to V^{4+}. ${ }^{[7]}$

Most information found in the literature concerns a compound formed in this system. ${ }^{[6-14]}$ This compound has
been described with the formula $\mathrm{V}_{2} \mathrm{MoO}_{8} \cdot{ }^{[7-10]}$ Nowadays, it is believed that the stoichiometry of this compound corresponds to the formula $\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40},{ }^{[6,7,11-13]}$ since it has been demonstrated that the compound is formed as a result of a reaction occurring between the components of this system, and, moreover, one of the products of the mentioned reaction is oxygen:

$$
\begin{equation*}
9 / 2 \mathrm{~V}_{2} \mathrm{O}_{5(\mathrm{~s})}+6 \mathrm{MoO}_{3(\mathrm{~s})}=\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40(\mathrm{~s})}+1 / 4 \mathrm{O}_{2(\mathrm{~g})} \tag{Eq2}
\end{equation*}
$$

The amount of evolved oxygen corresponds to $1 / 9$ of the quantity of vanadium atoms occurring as V^{4+} ions. ${ }^{[11]}$ The $\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}$ compound crystallizes in the monoclinic system ${ }^{[12]}$; its melting temperature amounts to $635{ }^{\circ} \mathrm{C}$. ${ }^{[11]}$

Diagrams of the phase equilibria being established in the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ system have been worked out as well. ${ }^{[8,11,14]}$ They are of the same type and differ from each other only by the composition of solid solution of MoO_{3} in $\mathrm{V}_{2} \mathrm{O}_{5}$ and the formula of the compound crystallizing in the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ system is $\left(\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}\right.$ or $\left.\mathrm{V}_{2} \mathrm{MoO}_{8}\right)$.

1.3 $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}$ System

It has been found that only one compound, aluminum orthovanadate(V), is formed in the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}$ system. ${ }^{[15-25]}$ Basic properties of AlVO_{4} are known. It melts incongruently with an accompanying deposition of $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ at a temperature that is reported differently, depending on the information source: $695^{\circ} \mathrm{C},{ }^{[15]} 760{ }^{\circ} \mathrm{C},{ }^{[16]}$ and $775{ }^{\circ} \mathrm{C}$. ${ }^{[17]}$ The authors have established that AlVO_{4} melts at $745 \pm 5{ }^{\circ} \mathrm{C} .{ }^{[21]}$ According to Cheshnitski, the melting temperature of AlVO_{4} depends on its synthesis conditions. ${ }^{[18]}$ Accordingly, the melting temperature of AlVO_{4} prepared by roasting an equimolar $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{V}_{2} \mathrm{O}_{5}$ mixture in air is $760^{\circ} \mathrm{C}$, whereas the sample heated additionally for 4 h at $650{ }^{\circ} \mathrm{C}$ in the atmosphere of oxygen melts at $778^{\circ} \mathrm{C}$. Only Barham predicates that AlVO_{4} is stable up to $625^{\circ} \mathrm{C}$, after that it undergoes decomposition yielding two solids: $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{V}_{2} \mathrm{O}_{5}{ }^{[20]}$

Under normal pressure, AlVO_{4} does not display polymorphism. Aluminum orthovanadate(V) crystallizes in the triclinic system ${ }^{[17,19]}$; parameters of its unit cell calculated on the basis of its powder diffraction pattern are: $a=0.648 \pm$ $0.003 \mathrm{~nm}, \quad b=0.775 \pm 0.002 \mathrm{~nm}, \quad c=0.909 \pm 0.002 \mathrm{~nm}$, $\alpha=96.72 \pm 0.3^{\circ}, \quad \beta=105.85 \pm 0.2^{\circ}, \quad \gamma=101.41 \pm 0.2^{\circ}$, $Z=6 .{ }^{[19]} \mathrm{AlVO}_{4}$ has also been an object of spectro${ }_{51}$ scopic studies: infrared (IR), ${ }^{[17,19]}$ Raman spectroscopy, ${ }^{[22]}$ ${ }^{51} \mathrm{~V}$ nuclear magnetic resonance (NMR). ${ }^{[23]} \mathrm{A}$ diffuse reflection spectrum of this compound is known, too. ${ }^{[24]}$

A full structure of AlVO_{4} has not been refined yet, although it has been known for a long time that AlVO_{4} is isostructural with FeVO_{4}, the structure of which has been determined using x-ray single-crystal diffraction. ${ }^{[25]}$ The isostructural character of both orthovanadates is evidenced by a formation of a continuous solid solution in the $\mathrm{AlVO}_{4}-$ FeVO_{4} system. ${ }^{[19]}$ The aim of this work was a refinement of the AlVO_{4} crystal structure, using a powder diffraction pattern of this phase and the structural parameters of FeVO_{4}. ${ }^{[25]}$

Three versions of the phase diagram of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}$ system are known. ${ }^{[15,18,20]}$

1.4 $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{MoO}_{3}$ System

The components of the next binary system, $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{MoO}_{3}$, form a compound-aluminum molybdate(VI). ${ }^{[26-31]}$ $\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ possesses two polymorphic modifications: a monoclinic form stable below the phase transition temperature, that is, $200^{\circ} \mathrm{C}$, and an orthorhombic form occurring at temperatures higher than the temperature of transformation. ${ }^{[26]}$ The structure of both polymorphs has been established. ${ }^{[26-31]} \quad \mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ melts congruently at $940{ }^{\circ} \mathrm{C}$. ${ }^{[29]}$

The phase diagram of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{MoO}_{3}$ system has not been worked out so far.

1.5 $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ System

In the solid state of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ ternary system, only one compound that contains all elements is formed: AlVMoO ${ }_{7} \cdot{ }^{[32,33]}$ This compound is also formed as a result of a reaction conducted in the solid state between AlVO_{4} and $\mathrm{MoO}_{3} .{ }^{[32]}$ The structure of AlVMoO_{7} has been solved by direct methods from high-resolution x-ray powder diffraction data and refined by the Rietveld method. ${ }^{[34]}$ This compound crystallizes in the orthorhombic system and belongs to the space group Pmcn. ${ }^{[34]} \mathrm{AlVMoO}_{7}$ melts incongruently at $690{ }^{\circ} \mathrm{C}$, depositing two phases: $\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ and $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}{ }^{[35]}$

Following their earlier studies, the authors have constructed a phase diagram of the $\mathrm{AlVO}_{4}-\mathrm{MoO}_{3}$ system, in which the AlVMoO_{7} compound ${ }^{[36]}$ occurs, as well as phase diagrams of the systems $\mathrm{AlVMoO}_{7}-\mathrm{V}_{2} \mathrm{O}_{5}{ }^{[37]}$ and $\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}-\mathrm{AlVMoO}_{7} \cdot{ }^{[38]}$ The reactivity of $\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ toward $\mathrm{AlVO}_{4}{ }^{[39]}$ and $\mathrm{V}_{2} \mathrm{O}_{5}{ }^{[40]}$ in the solid state has been investigated.

A full phase diagram of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ system, covering its subsolidus area, has not yet been worked out.

2. Experimental

2.1 Synthesis

The following oxides were employed in the experiments: $\mathrm{V}_{2} \mathrm{O}_{5}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$-analytically pure commercial products of POCh (Gliwice, Poland) - and MoO_{3} obtained by thermal decomposition of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ at 150 to $450{ }^{\circ} \mathrm{C}$ in air.

During the present studies, the following phases were identified: $\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}, \mathrm{AlVMoO}_{7}, \mathrm{AlVO}_{4}$, and $\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}$; in addition, the solid solution of MoO_{3} in $\mathrm{V}_{2} \mathrm{O}_{5}$, containing about $30 \mathrm{~mol} \% \mathrm{MoO}_{3}$ was used. The $\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}$ compound was obtained by the precipitation method earlier described by Jarman and Cheetham. ${ }^{[13]}$

Polycrystalline AlVO_{4} was prepared by precipitation, adopting the method of synthesis applied to iron(III) orthovanadate(V), described by Owen and Kung. ${ }^{[41]}$ In this method two solutions were prepared. One of them contained 53.5760 g of an analar $\mathrm{NH}_{4} \mathrm{VO}_{3}$ (Sigma-Aldrich Chemie

Section I: Basic and Applied Research

GmbH , Steinheim, Germany) and 121.8535 g of an analar $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (POCh Gliwice, Poland) dissolved in 758 mL of redistilled water; the other solution was prepared by dissolving 181.6435 g of an analar $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (POCh, Gliwice, Poland) in the same volume of water. Afterward the solutions were mixed and gently heated on a water bath until a thick paste had been obtained. The paste was first dried in a dryer at $100^{\circ} \mathrm{C}$ for 24 h and at $200^{\circ} \mathrm{C}$ for 48 h and then was calcined in a syllite furnace at $550^{\circ} \mathrm{C}$ for 48 h , and after grinding the calcination was continued at $650^{\circ} \mathrm{C}$ for 72 h . The final product was monophase, as proved by x-ray diffraction (XRD) analysis. Differential thermal analysis (DTA) has shown that it melts at $745 \pm 5^{\circ} \mathrm{C}$.

A preparation used for the experiments was also FeVO_{4} prepared by heating an equimolar $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{V}_{2} \mathrm{O}_{5}$ mixture under conditions described by Walczak et al. ${ }^{[42]}$

The remaining phases were obtained by reactions occurring in the solid state among appropriate mixtures of $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~V}_{2} \mathrm{O}_{5}$, and MoO_{3}, under the conditions described in detail elsewhere. ${ }^{[11,29,32]}$

Twenty-four samples were prepared from the oxide components of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ system and used in the test (Table 1). The reacting substances were weighed in appropriate amounts, homogenized by grinding, pelletized, and heated, depending on the composition of the sample, in order to achieve the state of equilibrium under various conditions. This final state was found to be established on
the basis of XRD analysis of the samples after successive stages of heating. All samples were rapidly cooled to the ambient temperature after the last stage of heating, and then their investigation was conducted using DTA and XRD.

Moreover, a series of mixtures were prepared from AlVO_{4} and $\mathrm{Al}_{2} \mathrm{O}_{3}$ as well as from AlVO_{4} and $\mathrm{V}_{2} \mathrm{O}_{5}$ with the intent to carry out further tests verifying the phase diagram of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}$ system. After homogenization, all of those mixtures were examined with the DTA method.

The phase diagram of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{MoO}_{3}$ system was constructed on the basis of the DTA curves taken from the mixtures $\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}+\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}+\mathrm{MoO}_{3}$.

2.2 IR and Scanning Electron Microscopy Measurements

AlVO_{4} and FeVO_{4} were examined by IR spectroscopy. The IR spectra were recorded at wave numbers 1500 to $250 \mathrm{~cm}^{-1}$ using a spectrometer of SPECORD M80 (Carl Zeiss, Jena, Germany). A technique used in the measurements was pressing pastilles with KBr at a weight proportion of 1:300.

The apparatus used for measuring the size of AlVO_{4} crystallites and determining the qualitative and quantitative composition of this phase was a scanning electron microscope of the JSM-1600 type (JOEL Ltd., Tokyo, Japan), equipped with an x-ray microanalyzer, ISIS 300 (Oxford Instruments, Abingdon, UK).

Table 1 The composition of the initial mixtures, the conditions of preparation, and the XRD phase analysis results after the final stage of heating the samples

No.	Composition of the initial mixtures, mol\%			Conditions of preparation	Phases found
	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{V}_{2} \mathrm{O}_{5}$	MoO3		
1	5.00	15.00	80.00	$500{ }^{\circ} \mathrm{C} \rightarrow 550{ }^{\circ} \mathrm{C}(72 \mathrm{~h})+580{ }^{\circ} \mathrm{C}(48 \mathrm{~h})+580{ }^{\circ} \mathrm{C}(24 \mathrm{~h})$	$\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}, \mathrm{~V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}, \mathrm{MoO}_{3}$
2	15.00	5.00	80.00		
3	5.00	30.00	65.00		
4	20.00	15.00	65.00	$500{ }^{\circ} \mathrm{C} \rightarrow 550{ }^{\circ} \mathrm{C}(72 \mathrm{~h})+560{ }^{\circ} \mathrm{C}(48 \mathrm{~h})$	$\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}, \mathrm{AlVMoO} 7, \mathrm{~V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}$
5	10.00	30.00	60.00		
6	5.00	38.00	57.00		
7	5.00	45.00	50.00	$500{ }^{\circ} \mathrm{C} \rightarrow 550{ }^{\circ} \mathrm{C}(72 \mathrm{~h})+560{ }^{\circ} \mathrm{C}(48 \mathrm{~h})$	$\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}, \mathrm{AlVMoO}_{7}, \mathrm{~V}_{2} \mathrm{O}_{5 \text { (s.s.) }}$
8	20.00	30.00	50.00		
9	5.00	55.00	40.00		
10	30.00	40.00	30.00	$500{ }^{\circ} \mathrm{C} \rightarrow 550{ }^{\circ} \mathrm{C}(72 \mathrm{~h})+570{ }^{\circ} \mathrm{C}(48 \mathrm{~h})+570{ }^{\circ} \mathrm{C}(48 \mathrm{~h})$	$\mathrm{AlVMoO}_{7}, \mathrm{AlVO}_{4}, \mathrm{~V}_{2} \mathrm{O}_{5 \text { (s.s.) }}$
11	25.00	55.00	20.00		
12	40.00	50.00	10.00		
13	15.00	70.00	15.00	$500{ }^{\circ} \mathrm{C} \rightarrow 550{ }^{\circ} \mathrm{C}(72 \mathrm{~h})+570{ }^{\circ} \mathrm{C}(48 \mathrm{~h})+570{ }^{\circ} \mathrm{C}(48 \mathrm{~h})$	$\mathrm{V}_{2} \mathrm{O}_{5(\text { s.s.) }}, \mathrm{AlVO}_{4}$
14	10.00	85.00	5.00		
15	35.00	60.00	5.00		
16	55.00	30.00	15.00	$500{ }^{\circ} \mathrm{C} \rightarrow 550{ }^{\circ} \mathrm{C}(48 \mathrm{~h})+580{ }^{\circ} \mathrm{C}(48 \mathrm{~h})+600^{\circ} \mathrm{C}(48 \mathrm{~h})$	$\mathrm{AlVMoO} 7{ }_{7}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{AlVO}_{4}$
17	60.00	20.00	20.00	$+620{ }^{\circ} \mathrm{C}(48 \mathrm{~h})$	
18	33.00	28.00	39.00		
19	45.00	18.00	37.00	$500{ }^{\circ} \mathrm{C} \rightarrow 550{ }^{\circ} \mathrm{C}(48 \mathrm{~h})+580{ }^{\circ} \mathrm{C}(48 \mathrm{~h})+600^{\circ} \mathrm{C}(48 \mathrm{~h})$	$\mathrm{AlVMoO}_{7}, \mathrm{Al}_{2} \mathrm{O}_{3}$
20	65.00	12.00	23.00	$+620{ }^{\circ} \mathrm{C}(48 \mathrm{~h})$	
21	80.00	7.00	13.00		
22	65.00	5.00	30.00	$500{ }^{\circ} \mathrm{C} \rightarrow 550{ }^{\circ} \mathrm{C}(72 \mathrm{~h})+600^{\circ} \mathrm{C}(48 \mathrm{~h})+620{ }^{\circ} \mathrm{C}(48 \mathrm{~h})$	$\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{AlVMoO} 7$
23	45.00	10.00	45.00	$+640{ }^{\circ} \mathrm{C}(48 \mathrm{~h})+670{ }^{\circ} \mathrm{C}(48 \mathrm{~h})$	
24	29.00	15.00	56.00		

2.3 X-Ray Powder Diffraction

The kind of phases contained in the samples was identified on the basis of x-ray phase analysis results (diffractometer DRON-3 made in Burevestnik, Sankt Petersburg, Russia, radiation Co K $\alpha /$ filter Fe , $\lambda_{1}=0.178892 \mathrm{~nm}$, $\lambda_{2}=0.179278 \mathrm{~nm}$) and the data found in PDF files. ${ }^{[43]}$

The powder diffraction pattern of AlVO_{4} was recorded at an angular range of 8.5 to $120^{\circ} 2 \theta$, the step size $0.02^{\circ}(2 \theta)$, time per step $=5 \mathrm{~s}$. The intensity of a diffracted beam was recorded using a scintillation counter. The temperature of data collection was equal to $25^{\circ} \mathrm{C}$.

2.4 DTA/TG Measurements

The DTA/TG investigations were performed using a Paulik-Paulik-Erdey derivatograph, a product of MOM (Budapest, Hungary). The measurements were conducted in air, in the temperature range 20 to $1000{ }^{\circ} \mathrm{C}$ and at a constant heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. All investigations were performed in quartz crucibles. The mass of investigated samples always amounted to 500 mg . The accuracy of temperature reading determined on the basis of repetitions was established as $\pm 5^{\circ} \mathrm{C}$.

3. Results and Discussion

3.1 Binary Systems

The work was begun with an elaboration of phase diagrams of the binary systems that comprise the ternary $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ system.

The binary system $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ did not require any verification tests, because the phase equilibria established in this system did not differ from the version presented by Bielański et al., ${ }^{[11]}$ and the only difference was the melting temperature of the binary eutectic, which, according to the authors' research, is equal to $610^{\circ} \mathrm{C}$.

Phase diagrams of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{MoO}_{3}$ systems were constructed on the basis of temperatures of thermal effects recorded on DTA curves of studied samples. The temperatures of solidus lines were defined based on temperatures of the onsets of the first endothermic effects. The liquidus curves were also established from the temperatures of the onsets of the last effects recorded on the DTA curves. The kind of solid phases remaining at equilibrium with liquid was identified based on XRD analysis results for the samples rapidly cooled to room temperature after they were heated at appropriate temperatures.

It is apparent in the phase diagram of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{MoO}_{3}$ system (Fig. 1) that this is a simple eutectic system with a compound that melts congruently at $940{ }^{\circ} \mathrm{C}$. Aluminum molybdate(VI) forms two eutectic mixtures: one with $\mathrm{Al}_{2} \mathrm{O}_{3}$ ($\sim 35 \mathrm{~mol} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\sim 65 \mathrm{~mol} \% \mathrm{MoO}_{3}$), melting at $820{ }^{\circ} \mathrm{C}$, and the other, however, with $\mathrm{MoO}_{3}(10 \mathrm{~mol} \%$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $90 \mathrm{~mol} \% \mathrm{MoO}_{3}$) melting at $740{ }^{\circ} \mathrm{C}$.

The verification of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}$ phase diagram (Fig. 2) has proved that at the content of $\sim 8 \mathrm{~mol} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\sim 92 \mathrm{~mol} \% \mathrm{~V}_{2} \mathrm{O}_{5}$, the components heated to $\sim 640{ }^{\circ} \mathrm{C}$ form a eutectic: $\mathrm{AlVO}_{4}+\mathrm{V}_{2} \mathrm{O}_{5}$. Its melting temperature determined by the authors is the same as that reported by Cirilli and Burdese, ${ }^{[15]}$ but it differs from the temperature suggested by Cheshnitski. ${ }^{[18]}$

Fig. 1 Phase diagram of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{MoO}_{3}$ system

Fig. 2 Phase diagram of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}$ system

According to the authors' studies, AlVO_{4} melts incongruently at $745^{\circ} \mathrm{C}$, releasing the solid $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$. The AlVO_{4} melting temperature determined by the authors is different from the melting temperatures presented in other works. ${ }^{[15-17]}$

3.2 The $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ Ternary System

Table 1 presents the composition of samples subjected to the tests and their preparation conditions, as well as XRD analysis results for all samples in the state of equilibrium. The data provided in Table 1 confirm the published conclusions from earlier investigations of phase equilibria established in the binary systems that are cross sections of the ternary system. ${ }^{[36-40]}$

The final verification of the entire subsolidus area consisted of preparing appropriate mixtures of the phases that were, on the basis of the results of earlier studies, considered to be at equilibrium within certain partial subsystems. The compositions of these mixtures, converted into the components of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ system, corresponded to the compositions of samples presented in Table 1. These mixtures were subjected to long-term heating at temperatures slightly lower than the temperatures of corresponding solidus planes, and next they were rapidly cooled to room temperature. The XRD analysis has shown that, despite the long-term heating, at the temperatures close to the start of melting the phase composition of none of these preparations underwent any changes. This confirms that the initial mixtures corresponded, as to their composition, to the earlier identified phases coexisting at equilibrium within particular fields of subsolidus area.

All results of conducted investigations, namely the phase diagrams of the cross sections as well as the outcome of
tests performed with the samples of the basic and the verification series, allowed the authors to determine a phase diagram for the subsolidus area of $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ over the entire concentration range of the components (Fig. 3). The onset temperatures of melting for all the mixtures coexisting within a given partial subsystem have been plotted in the diagram. These were the temperatures of the first endothermic effect, recorded on the DTA curves taken from the preparations corresponding to the given partial subsystem. Also the compositions of the binary eutectics (e) and the parameters of the peritectic points (p) in the binary systems are shown in the diagrams.

It can be concluded from the phase diagram presented in Fig. 3 that the subsolidus area of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ system is composed of seven partial subsystems. The temperatures of the solidus planes covering four of the seven fields have been determined by measuring the melting temperatures of ternary eutectics:
I. $\left[\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}-\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}-\mathrm{MoO}_{3}\right]\left(t_{\mathrm{e}}=605^{\circ} \mathrm{C}\right)$
II. $\left[\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}-\mathrm{AlVMoO}_{7}-\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}\right]\left(t_{\mathrm{e}}=600^{\circ} \mathrm{C}\right)$
III. $\left[\mathrm{AlVMoO}_{7}-\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}-\mathrm{V}_{2} \mathrm{O}_{5(\text { s.s. })}\right]\left(t_{\mathrm{e}}=580{ }^{\circ} \mathrm{C}\right)$
IV. $\left[\mathrm{AlVO}_{4}-\mathrm{AlVMoO}_{7}-\mathrm{V}_{2} \mathrm{O}_{5 \text { (s.s. })}\right]\left(t_{\mathrm{e}}=595{ }^{\circ} \mathrm{C}\right)$

The temperatures of the solidus planes of further two fields were defined by the temperatures of ternary quasiperitectic reactions. Hence, the melting temperature of the $\left[\mathrm{AlVMoO}_{7(\mathrm{~s})}+\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+\mathrm{AlVO}_{4(\mathrm{~s})}\right]$ field was determined as the temperature at which the following reaction occurs:

$$
\begin{equation*}
\text { Liquid }+\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{AlVMoO}_{7(\mathrm{~s})}+\mathrm{AlVO}_{4(\mathrm{~s})} \tag{Eq3}
\end{equation*}
$$

whereas for the field $\left[\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3(\mathrm{~s})}+\mathrm{AlVMoO}_{7(\mathrm{~s})}+\right.$ $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$] it was the temperature of the reaction:

Fig. 3 Projection of the subsolidus area of $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ onto the plane of the concentration triangle of the component

$$
\begin{equation*}
\text { Liquid }+\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3(\mathrm{~s})} \rightleftharpoons \mathrm{AlVMoO}_{7(\mathrm{~s})} \tag{Eq4}
\end{equation*}
$$

The melting of the $\left[\mathrm{AlVO}_{4(\mathrm{~s})}+\mathrm{V}_{2} \mathrm{O}_{5(\mathrm{~s} . \mathrm{s} .)}\right]$ field, because of the occurrence of solid solutions of MoO_{3} in $\mathrm{V}_{2} \mathrm{O}_{5}$ possessing variable contents of MoO_{3}, runs in a range of temperatures, from the melting temperature of binary eutectics formed within the lateral systems, $\mathrm{AlVO}_{4}-\mathrm{V}_{2} \mathrm{O}_{5}$ and $\mathrm{V}_{2} \mathrm{O}_{5(\text { s.s. })}-\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}$, up to $595{ }^{\circ} \mathrm{C}$.

3.3 Crystal Structure of AlVO $_{4}$

Scanning electron microscopy investigations of the AlVO_{4} sample have shown that most of the crystallites have a dimension of 0.5 to $1.0 \mu \mathrm{~m}$, and only few of them are larger, with dimensions of 1.0 to $3.0 \mu \mathrm{~m}$. An analysis of the largest crystallites performed by an x-ray microprobe has shown that they contain vanadium, aluminum, and oxygen. A fixed molar ratio of $\mathrm{Al}: \mathrm{V}$ was very close to the theoretical value for AlVO_{4} and was equal to 50.66:49.34

The powder diffraction pattern of the AlVO_{4} synthesized by the authors differed slightly from the published one ${ }^{[17,19]}$ as to the number of reflections and the corresponding interplanar distances. An analysis of the diffraction pattern was carried out using the program FULLPROF ${ }^{[44]}$ and the Rietveld method. ${ }^{[45-47]}$ The structural parameters of FeVO_{4}, space group $P \overline{1}, \mathrm{Z}=6$, were used as a primary model for the refinement. ${ }^{[25]}$ The background was determined graphically and approximated by linear interpolation among 50

Table 2 Results of preliminary refinements (pattern matching) by a Rietveld program for AlVO_{4}

Unit cell parameters	
$a, \mathrm{~nm}$	$0.65323(1)$
$b, \mathrm{~nm}$	$0.77498(2)$
$c, \mathrm{~nm}$	$0.91233(3)$
α, deg	$96.175(2)$
β, deg	$107.234(3)$
γ, deg	$101.404(3)$
Volume, nm^{3}	0.42555
Peak shape function pseudo-Voigt mixing parameter, η	0.4111
Scale factor	0.004648
Asymmetry parameter	$-0.07(1)$
Zero-point correction, deg (2θ)	$-0.057(3)$
Half-width parameters	
U	$0.043(9)$
V	$-0.032(9)$
W	$0.025(2)$
Reliability factors	
$R_{\text {wp }}, \%$	2.84
$R_{\text {exp }}, \%$	2.36
χ^{2}	1.45

points. The number of the parameters refined was 86 , and 709 reflections were observed. The definitions of the reliability factors corresponded to the usual ones. ${ }^{[45]}$ Table 2

Table 3 Atomic coordinates and isotropic Debye-Waller parameter \boldsymbol{B} for AlVO_{4} (esd given in parentheses)

	Atomic coordinates			
Atom	$\boldsymbol{x} / \boldsymbol{a}$	$\boldsymbol{y} / \boldsymbol{b}$	$\boldsymbol{z} / \boldsymbol{c}$	Isotropic Debye-Waller parameters $\left(\boldsymbol{B} \times \mathbf{1 0}^{\mathbf{2}}\right), \mathbf{n m}^{2}$
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathrm{Al}(1)$	$0.743(3)$	$0.697(2)$	$0.399(2)$	4.3
$\mathrm{Al}(2)$	$0.468(3)$	$0.885(2)$	$0.212(2)$	3.2
$\mathrm{Al}(3)$	$0.953(3)$	$0.306(2)$	$0.999(2)$	2.5
$\mathrm{~V}(1)$	$0.002(1)$	$0.995(1)$	$0.257(1)$	3.3
$\mathrm{~V}(2)$	$0.199(1)$	$0.605(1)$	$0.347(1)$	3.1
$\mathrm{~V}(3)$	$0.514(1)$	$0.295(1)$	$0.125(1)$	2.4
$\mathrm{O}(1)$	$0.630(3)$	$0.499(3)$	$0.260(3)$	1.7
$\mathrm{O}(2)$	$0.259(3)$	$0.433(3)$	$0.429(3)$	1.1
$\mathrm{O}(3)$	$0.034(4)$	$0.699(3)$	$0.428(2)$	0.5
$\mathrm{O}(4)$	$0.166(4)$	$0.093(3)$	$0.431(3)$	3.6
$\mathrm{O}(5)$	$0.458(4)$	$0.743(3)$	$0.362(3)$	1.9
$\mathrm{O}(6)$	$0.755(4)$	$0.876(3)$	$0.261(2)$	0.7
$\mathrm{O}(7)$	$0.518(4)$	$0.119(3)$	$0.222(2)$	2.6
$\mathrm{O}(8)$	$0.157(4)$	$0.882(3)$	$0.185(3)$	0.7
$\mathrm{O}(9)$	$0.362(4)$	$0.733(3)$	$0.017(3)$	3.0
$\mathrm{O}(10)$	$0.255(4)$	$0.304(3)$	$0.042(3)$	1.5
$\mathrm{O}(11)$	$0.955(4)$	$0.160(3)$	$0.152(3)$	2.6
$\mathrm{O}(12)$	$0.047(4)$	$0.513(4)$	$0.148(3)$	3.9

esd, estimated standard deviation
shows results of preliminary refinements (so-called pattern matching) of the AlVO_{4} diffractogram.

The x-ray calculated density $\rho_{\mathrm{rtg}}=3.319 \mathrm{~g} / \mathrm{cm}^{3}$ is close to the pycnometric density $\rho_{\exp }=3.32(5) \mathrm{g} / \mathrm{cm}^{3}$ determined by the method described in Kluz and Waclawska, ${ }^{[48]}$ for $M=141.92$.

Table 3 shows atomic coordinates in the unit cell and the Debye-Waller isotropic temperature factors obtained from the Rietveld refinement of the AlVO_{4} structure.

It is possible to differentiate three crystallographically independent aluminum atoms in the crystal lattice of AlVO_{4}. Two of them, $\mathrm{Al}(1)$ and $\mathrm{Al}(3)$, are in distorted oxygen octahedra. The third aluminum atom, $\mathrm{Al}(2)$, is surrounded by five oxygen atoms that lie at corners of a trigonal bipyramid, distorted as well. The three aluminum atoms and three others related by a center of symmetry constitute a doubly bent chain composed of six edge-sharing polyhedra (four AlO_{6} and two AlO_{5}) (Fig. 4). Each such six-member chain makes by itself an $\mathrm{Al}_{6} \mathrm{O}_{24}$ unit that is connected with distorted VO_{4} tetrahedra through common oxygen vertices. The O-Al-O angles in the AlO_{6} octahedra vary from the ideal values, 180 and 90°, by a maximum of 11.2°, and the Al-O bond lengths are contained within the range of 0.176 to 0.204 nm . The length of the shortest Al-O linkage $(0.176 \mathrm{~nm})$ in the $\mathrm{Al}(1) \mathrm{O}_{6}$ octahedron differs considerably from 0.1895 nm -a typical value for an AlO_{6} octahedron, being close to the Al-O bond lengths in ideal AlO_{4} tetrahedra, namely, $0.175 \mathrm{~nm} .{ }^{[49]}$ On the other hand, the longest $\mathrm{Al}-\mathrm{O}$ bond in the AlO_{6} octahedra, that is, the $\mathrm{Al}(3)-\mathrm{O}(12)$ bond, with its length equal to 0.204 nm , is

Fig. 4 Doubly bent chain of $\mathrm{Al}_{6} \mathrm{O}_{24}$ unit, projected onto the a-b plane
much longer than a typical bond. These facts point out a considerable distortion of the AlO_{6} octahedra.

The aluminum atom $\mathrm{Al}(2)$ situated in a distorted trigonal bipyramid is linked by five bonds with oxygen atoms, the shortest bond length amounts to 0.176 nm , and the longest- 0.197 nm versus the value of 0.184 nm -is typical for the AlO_{5} trigonal bipyramid. Aluminum of the same coordination in trigonal bipyramids is found in the following minerals: grandiderite, $\left(\mathrm{Mg}, \mathrm{Fe}^{2}\right) \mathrm{Al}_{3} \mathrm{SiBO}_{9},{ }^{[50]}$ augelite, $\mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)(\mathrm{OH})_{3},{ }^{[51]}$ andalusite, $\mathrm{Al}_{2} \mathrm{SiO}_{5} .{ }^{[52]}$ In these minerals the AlO_{5} and AlO_{6} polyhedra combine by sharing common edges.

In spite of the significant distortion of the AlO_{x} polyhedra, the mean values of the Al-O bond lengths in the AlO_{6} octahedra equal to 0.190 and 0.194 nm are explicitly longer than the mean value $(0.184 \mathrm{~nm})$ for the $\mathrm{Al}-\mathrm{O}$ bonding in a perfect AlO_{5} trigonal bipyramid. On the other hand, the distances between the aluminum atoms $\mathrm{Al}(3)-\mathrm{Al}(3), \mathrm{Al}(1)-\mathrm{Al}(2)$, and $\mathrm{Al}(2)-\mathrm{Al}(3)$, making up 0.294, 0.283 , and 0.285 nm , respectively, are longer than the value calculated for ideal edge-sharing AlO_{6} polyhedra, 0.267 nm . The factor responsible for the elongation of the $\mathrm{Al}-\mathrm{Al}$ bonds is ionic repulsion between the Al^{3+} ions in the AlO_{x} polyhedra combined by common edges.

Three independent vanadium atoms occur in distorted VO_{4} tetrahedra. The VO_{4} tetrahedra share neither edges nor vertices. The mean value of bond angles in the VO_{4} tetrahedra differs merely by 0.1° from the expected value, 109.5°. However, in an extreme case, for the angle $0(8)-\mathrm{V}(1)-\mathrm{O}(6)$ the difference makes up 8.0°. The V-O bond lengths in individual tetrahedra are confined within the range of 0.163 to 0.178 nm . A confrontation of these values with the expected value of 0.1715 nm for the $\mathrm{V}-\mathrm{O}$ bond length in an ideal VO_{4} tetrahedron indicates a considerable deformation of the VO_{4} tetrahedra.

A comparison between the structural data for AlVO_{4} and FeVO_{4} gives an indication that the average $\mathrm{M}-\mathrm{O}$ bond lengths, where $\mathrm{M}=\mathrm{Al}, \mathrm{Fe}$, in MO_{6} and MO_{5} polyhedra building the AlVO_{4} and FeVO_{4} structures are confined within the range of difference as little as 0.01 to 0.006 nm

Fig. 5 IR spectra of AlVO_{4} (curve a) and FeVO_{4} (curve b)
and reflect approximately the difference between the Al^{3+} and Fe^{3+} ionic radii in appropriate coordinations. ${ }^{[25,49]}$ The differences between the corresponding mean values of V-O bond lengths in the VO_{4} tetrahedra are even smaller. Only the $\mathrm{V}(1) \mathrm{O}_{4}$ tetrahedron in the AlVO_{4} structure is noticeably smaller than its counterpart in the FeVO_{4} structure.

The shortest bonds $\mathrm{V}(1)-\mathrm{O}(4)$ of 0.163 nm in AlVO_{4} and of 0.1649 nm in FeVO_{4} do not possess a character of double bonds, as the oxygen atom $\mathrm{O}(4)$ is additionally combined with the atoms $\mathrm{Al}(1)$ or $\mathrm{Fe}(1)$.

In both vanadate structures the VO_{4} tetrahedra are separate, because they do not share either vertices or edges. Consequently, AlVO_{4} and FeVO_{4} have been reckoned among orthovanadates.

It can also be concluded from the comparison of the structural data for AlVO_{4} and FeVO_{4}, pertaining to appropriate bond lengths and angles, that the structural distortion of AlVO_{4} is greater than that of FeVO_{4}. The infrared spectrum of AlVO_{4} provides further evidence for this observation.

Figure 5 shows IR spectra of AlVO_{4} (curve a) and FeVO_{4} (curve b). In each of them four fundamental absorption bands can be distinguished. The IR spectrum of AlVO_{4} is characterized by a larger number of discrete absorption bands when compared with the FeVO_{4} spectrum. The reason for this fact is a stronger distortion of the AlVO_{4} structure against that of the FeVO_{4} structure. All absorption bands in the vibration spectrum of AlVO_{4} are shifted toward higher wave numbers when compared with the IR spectrum of FeVO_{4}. As the ionic radius of Al^{3+} is smaller than the Fe^{3+} radius, all the $\mathrm{Al}-\mathrm{O}$ bonds in AlO_{6} and AlO_{5} are shorter than the $\mathrm{Fe}-\mathrm{O}$ bonds in FeVO_{4}. This also entails shortening of the $\mathrm{V}-\mathrm{O}$ bonds in the VO_{4} tetrahedra of AlVO_{4}, compared with FeVO_{4}, and as a result of this an explicit contraction of the crystal lattice: FeVO_{4} with $\mathrm{V}=0.46925 \mathrm{~nm}^{3}$ versus AlVO_{4} with $\mathrm{V}=0.42555 \mathrm{~nm}^{3}$.

In the vibration spectrum of AlVO_{4}, the first absorption band lying between 1100 and $830 \mathrm{~cm}^{-1}$ displays absorption maxima at $1010,974,920,894$, and $852 \mathrm{~cm}^{-1}$. This band reflects stretching vibrations of the $\mathrm{V}-\mathrm{O}$ bonds in the VO_{4} tetrahedra. ${ }^{[17,19,53-56]}$ The second absorption band, lying
over the wave-number range of 830 to $660 \mathrm{~cm}^{-1}$ with its absorption maxima at $814,770,747$, and $722 \mathrm{~cm}^{-1}$, has been ascribed to stretching vibrations of the Al-O bonds in the AlO_{5} trigonal bipyramids ${ }^{[19,57]}$ and of the shortest Al-O bond $(0.176 \mathrm{~nm})$ in the $\mathrm{Al}(1) \mathrm{O}_{6}$ octahedron. The third band exhibits its absorption maxima at $618,588,552,536$, and $522 \mathrm{~cm}^{-1}$. They correspond to the Al-O stretching vibrations of AlO_{6} within the $\mathrm{Al}_{6} \mathrm{O}_{24}$ chains. ${ }^{[57]}$ Absorption within this wave-number range has been also noticed in the IR spectra of the $\mathrm{MAl}_{2} \mathrm{O}_{4}$ spinels ${ }^{[57]}$ and of $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$. ${ }^{[58]}$ In the last wave-number range, namely, at 520 to $280 \mathrm{~cm}^{-1}$, the vibrational spectrum of AlVO_{4} includes a number of distinct absorption bands. They are produced by bending vibrations of the $\mathrm{V}-\mathrm{O}$ bonds in the VO_{4} tetrahedra and of the $\mathrm{Al}-\mathrm{O}$ in the AlO_{5} and AlO_{6} polyhedra. It cannot be excluded that within this wave-number range the absorption bands are brought about also by bending vibrations of Al-O-V or by vibrations of a mixed character. ${ }^{[19,53-56,58]}$

4. Summary

The investigations conducted within this work have allowed the authors to succeed with:

- A verification of binary systems constituting the title ternary system, that is of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{MoO}_{3}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ $\mathrm{V}_{2} \mathrm{O}$ systems. This verification comprised: (a) It has been proved that the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{MoO}_{3}$ system is a simple eutectic system. Aluminum molybdate(VI), a compound produced within this system, forms two eutectic mixtures: one with $\mathrm{Al}_{2} \mathrm{O}_{3}\left(\sim 35 \% \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}\right.$ and $\sim 65 \%$ mol MoO_{3}), melting at $820^{\circ} \mathrm{C}$, and the other, however, with $\mathrm{MoO}_{3}\left(10 \% \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}\right.$ and $90 \% \mathrm{~mol}$ MoO_{3}) melting at $740{ }^{\circ} \mathrm{C}$. (b) It has been confirmed that in the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}$ system its components form an eutectic, $\quad \mathrm{AlVO}_{4}+\mathrm{V}_{2} \mathrm{O}_{5} \quad\left(\sim 8 \mathrm{~mol} \% \quad \mathrm{Al}_{2} \mathrm{O}_{3}\right.$ and $\sim 92 \mathrm{~mol} \% \mathrm{~V}_{2} \mathrm{O}_{5}$), which melts at $\sim 640{ }^{\circ} \mathrm{C}$. It has been established that aluminum orthovanadate (V) melts incongruently at $745{ }^{\circ} \mathrm{C}$, depositing $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$.
- Defining the phase equilibria being established in the ternary system, i.e., $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ over the entire range of component concentrations. It has been confirmed that in the subsolidus area of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}$ MoO_{3} system there exist seven phases, that is $\mathrm{Al}_{2} \mathrm{O}_{3}$, $\mathrm{V}_{2} \mathrm{O}_{5 \text { (s.s.) }}, \quad \mathrm{MoO}_{3}, \quad \mathrm{AlVO}_{4}, \quad \mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}, \quad \mathrm{AlVMoO}{ }_{7}$, $\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}$. Seven fields in which particular phases coexist at equilibrium have been delimited.
- Constructing a phase diagram for the subsolidus area of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ system in the entire range of component concentrations (Fig. 3).
- Refining the structure of AlVO_{4}, a compound occurring in the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}$ system, by means of the Rietveld method. The space group is triclinic, $P \overline{1}$, $Z=6$, with $a=0.65323(1) \mathrm{nm}, b=0.77498(2) \mathrm{nm}$, $c=0.91233(3) \mathrm{nm}, \alpha=96.175(2)^{\circ}, \quad \beta=107.234(3)^{\circ}$, $\gamma=101.404(3)^{\circ}, V=0.42555 \mathrm{~nm}^{3}$.
- Presenting a comparison between the IR spectra of AlVO_{4} and FeVO_{4}.

References

1. A. Bielański and M. Najbar, $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ Catalysts for Benzene Oxidation, Appl. Catal., 1997, 157, p 223-261
2. A. Parmaliana, F. Arena, F. Frusten, N. Giordano, M.S. Scurrell, and V. Sokolovskii, Partial Oxidation of Methane to Formaldehyde on Bulk and Silica Supported MoO_{3} and $\mathrm{V}_{2} \mathrm{O}_{5}$ Catalysts: Surface Features and Reaction Mechanism, Stud. Surf. Sci. Catal., 1997, 107, p 2328-2332
3. J. Tichy, Oxidation of Acrolein to Acrylic Acid over Vanadium-Molybdenum Oxide Catalysts, Appl. Catal., 1997, 157, p 363-385
4. T. Kabe, W. Qian, Y. Hirai, L. Li, and A. Ishihara, Hydrodesulfurization and Hydrogenation Reactions on Noble Metal Catalysts, J. Catal., 2000, 190, p 191-198
5. J.M. Lewis, R.A. Kydal, and J. Catal, The $\mathrm{MoO}_{3}-\mathrm{Al}_{2} \mathrm{O}_{3}$ Interaction: Influence of Phosphorus on MoO_{3} Impregnation and Reactivity in Thiophene HDS, J. Catal., 1992, 136, p 478486
6. I.L. Botto, M. Vassalo, G. Fierro, D. Cordischi, M. Inversi, and G. Minelli, Some Aspects of $\beta-\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}$ Reduction: TPR, XRD, SEM, IR and EPR Spectroscopic Studies, J. Mater. Chem., 1997, 7, p 2286-2297
7. H. Schadow, H. Oppermann, and B. Wehner, Untersuchungen zum ternären System V/Mo/O, Z. Anorg. Allg. Chem., 1995, 621, p 624-629, in German
8. N. Strupler and A. Morette, Sur les equilibres liquide-solide dans le de M ${ }^{\text {IIe }}$, C.R. Acad. Sci. Paris, 1965, 260, p 19711973, in French
9. A. Magneli and B. Blomberg, Studies on the Vanadium Pentaoxide-Molybdenum Trioxide System, Acta Chem. Scand., 1951, 5, p 584-585
10. H.A. Eick and L. Kihlborg, The Crystal Structure of $\mathrm{V}_{2} \mathrm{MoO}_{8}$, Acta Chem. Scand., 1966, 20, p 1658-1666
11. A. Bielański, K. Dyrek, J. Poźniczek, and E. Wenda, Studies on the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ System: Magnetic Properties, Bull. Acad. Polon. Sci. Ser. Sci. Chim., 1971, 19, p 513-521
12. R.C.T. Slade, A. Ramanan, B.C. West, and E. Prince, The Structure of $\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}$ Determined by Powder Neutron Diffraction, J. Solid State Chem., 1989, 82, p 65-69
13. R.H. Jarman and A.K. Cheetham, An Investigation of Phase Equilibria in the System $\mathrm{MoO}_{3}-\mathrm{V}_{2} \mathrm{O}_{\mathrm{X}}(4<\mathrm{x}<5)$ by Analytical Electron Microscopy, Mater. Res. Bull., 1982, 17, p 1011-1015
14. V.L. Volkov, G.Sh. Tynkacheva, A.A. Fotiev, and E.V. Tkachenko, Sistema $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$, Zh. Neorg. Khim., 1972, 17, p 2803-2805
15. V. Cirilli and A. Burdese, Sulla corrosione dei metalli ad alta temperatura da parte dell' anidride vanadica, Metall. Ital., 1957, 49, p 320-322, in Italian
16. A.A. Fotiev, L.L. Surat, G.A. Korablev, and A.H. Tretiakov, Fazovyje sootnovieniav sistemie $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Al}_{2} \mathrm{O}_{5}-\mathrm{Cr}_{2} \mathrm{O}_{3}$, Zh. Neorg. Khim., 1981, 26, p 242-248, in Russian
17. O. Yamaguchi, T. Uegaki, Y. Miyata, and K. Shimizu, Formation of AlVO_{4} Solid Solution from Alkoxides, J. Am. Ceram. Soc., 1987, 70, p 198-200
18. S.M. Cheshnitski, A.A. Fotiev, and L.L. Surat, Sistema $\mathrm{V}_{2} \mathrm{O}_{5^{-}}$ $\mathrm{Al}_{2} \mathrm{O}_{3}$, Zh. Neorg. Khim., 1983, 28, p 1342-1344, in Russian
19. E.J. Baran and I.L. Botto, Kristallographische Daten und IR-Spektrum von AlVO_{4}, Monatsh. Chem., 1977, 108, p 311318, in Germany
20. D. Barham, An Investigation of the System $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{Al}_{2} \mathrm{O}_{3}$, Trans. Br. Ceram. Soc., 1965, 64, p 371-375
21. M. Kurzawa and G. Dabrowska, Subsolidus Phase Equilibria in the System $\mathrm{AlVO}_{4}-\mathrm{MoO}_{3}$, J. Therm. Anal., 1995, 45, p 1049-1053
22. F.O. Hardcastle and I.E. Wachs, Determination of VanadiumOxygen Bond Distances and Bond Orders by Raman Spectroscopy, J. Phys. Chem., 1991, 95, p 5031-5041
23. H. Eckert and I.E. Wachs, Solid-State ${ }^{51}$ V NMR Structural Studies on Supported Vanadium(V) Oxide Catalysts: Vanadium Oxide Surface Layers on Alumina and Titania Supports, J. Phys. Chem., 1989, 93, p 6796-6805
24. T. Groń, H. Duda, J. Krok-Kowalski, J. Walczak, E. Filipek, P. Tabero, A. Wyrostek, and K. Bärner, Electrical and Optical Properties of $\mathrm{AVO}_{4}(\mathrm{~A}=\mathrm{Fe}, \mathrm{Cr}, \mathrm{Al})$ Compounds, Radiat. Effects Defects Solids, 1995, 133, p 341-348
25. B. Robertson and E. Kostiner, Crystal Structure and Mössbauer Effect Investigation of FeVO_{4}, J. Solid State Chem., 1972, 4, p 29-37
26. P. Forzatti, C.M. Mari, and P. Villa, Defect Structure and Transport Properties of $\mathrm{Cr}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ and $\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$, Mater. Res. Bull., 1987, 22, p 1593-1602
27. A.W. Sleight and L.H. Brixner, A New Ferroelastic Transition in Some $\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ Molybdates and Tungstates, J. Solid State Chem., 1973, 7, p 172-174
28. W.T.A. Harrison and A. Cheetham, The Crystal Structure of Aluminum Molybdate, $\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$, Determined by Time-ofFlight Power Neutron Diffraction, J. Solid State Chem., 1988, 76, p 328-333
29. L.M. Plyasova and L.M. Kefeli, Rentgenograficzeskije isliedovania molibdatov chroma i aluminia, Izv. Akad. Nauk SSSR, Neorg. Mater., 1967, 3, p 906-908, in Russian
30. V.K. Trunov, V.V. Lucenko, and L.M. Kova, O bzaimodiejstvi okisi aluminia z triehokisjami wolframa i molibdena, Izv. Vyssh. Uchebn. Zaved. SSSR, Khim. Khim. Tekhnol., 1967, 4, p 375-376, in Russian
31. K. Nassau, H.J. Levinstein, and G.M. Loiacono, A Comprehensive Study of Trivalent Tungstates and Molybdates of the Type $\mathrm{L}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$, J. Phys. Chem. Solids, 1965, 26, p 18051816
32. J. Walczak and P. Tabero, Studies on the System $\mathrm{Al}_{2} \mathrm{O}_{5}-\mathrm{V}_{2} \mathrm{O}_{5^{-}}$ MoO_{3}, J. Therm. Anal., 1990, 36, p 2173-2176
33. J. Walczak, P. Tabero, and E. Filipek, Synthesis of AlVMoO_{7}, Thermochim. Acta, 1996, 275, p 249-257
34. K. Knorr, P. Jakubus, G. Dąbrowska, and M. Kurzawa, Crystal Structure Determination of AlVMoO_{7} from X-ray Powder Diffraction Data, J. Solid State Inorg. Chem., 1998, 35, p 519530
35. J. Walczak and P. Tabero, The AlVMoO_{7} and Its Certain Properties, Mezhdunarodnaya Konferentsiya Khimiya Tverdogo Tela, Odessa, SSSR, 1990, Tezisy Dokl., Chast II, p 160-161
36. M. Kurzawa and G. Dąbrowska, Phase Diagram of the $\mathrm{AlVO}_{4}-\mathrm{MoO}_{3}$ System, Polish J. Chem., 1996, 70, p 417-422
37. M. Kurzawa and G. Dąbrowska, Studies on the AlVMoO_{7} $\mathrm{V}_{2} \mathrm{O}_{5}$ system, J. Therm. Anal. Cal., 1999, 56, p 217-222
38. M. Kurzawa and G. Dabbrowska, Phase Equilibria in the System $\mathrm{V}_{9} \mathrm{Mo}_{6} \mathrm{O}_{40}-\mathrm{AlVMoO}_{7}$, J. Therm. Anal. Cal., 1999, 55, p 243-247
39. M. Kurzawa and G. Dąbrowska, Phase Equilibria in the $\mathrm{AlVO}_{4}-\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ System, J. Phase Equil., 1997, 18, p 147151
40. M. Kurzawa and G. Dabbrowska, Reactivity of $\mathrm{Al}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ with $\mathrm{V}_{2} \mathrm{O}_{5}$ in the Solid State, Solid State Ionics, 1997, 101103, p 1189-1193
41. O.S. Owen and H.H. Kung, Effect of Cation Reducibility on Oxidative Dehydrogenation of Butane on Orthovanadates, J. Mol. Catal., 1993, 79, p 265-284
42. J. Walczak, J. Ziolkowski, M. Kurzawa, J. Osten-Sacken, and M. Lysio, Studies on the Ferric Oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$-Vanadium Oxide $\left(\mathrm{V}_{2} \mathrm{O}_{5}\right)$ System, Polish J. Chem., 1985, 59, p 255-262
43. Powder Diffraction File, International Center for Diffraction Data, Swarthmore, PA, 1989
44. J. Rodriguez-Carrajal, Program FullProf, Version 3.2, Jan 96-LLb-JRC, 1997
45. H.M. Rietveld, Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement, Acta Crystallogr., 1967, 22, p 151-152
46. H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Crystallogr., 1969, 2, p 65-71
47. R.A. Young, The Rietveld Method, International Union of Crystallography, Oxford University Press, 1993
48. Z. Kluz and J. Waclawska, Precise Determination of Powder Density, Roczniki Chemii, 1974, 49, p 839
49. R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. A, 1976, 32, p 751-767
50. D.A. Stephenson and P.B. Moore, Crystal Structure of Grandidierite ($\mathrm{Mg}, \mathrm{Fe}^{2}$) $\mathrm{Al}_{3} \mathrm{SiBO}_{9}$, Acta Crystallogr. B, 1968, 24, p 1518-1522
51. T. Araki, J.J. Finney, and T. Zoltai, The Crystal Structure of Augelite, Am. Mineral., 1968, 53, p 1096-1103
52. C.W. Burnham and M.J. Buerger, Refinement of the Crystal Structure of Andalusite, Z. Kristallogr., 1961, 115, p 269290
53. M. Kurzawa, Infrared Spectra of FeVMoO_{7} and $\mathrm{Fe}_{4} \mathrm{~V}_{2}$ $\mathrm{Mo}_{3} \mathrm{O}_{20}$, J. Mater. Sci. Lett., 1992, 11, p 976-979
54. A.E. Lavat, M.C. Grasselli, and E.J. Baran, The IR Spectra of the $\left(\mathrm{Cr}_{\mathrm{x}} \mathrm{Fe}_{1-\mathrm{x}}\right) \mathrm{VO}_{4}$ Phases, J. Solid State Chem., 1989, 78, p 206-208
55. D.I. Roncaglia, I.L. Botto, and E.J. Baran, Characterization of a Low-Temperature Form of InVO_{4}, J. Solid State Chem., 1986, 62, p 11-15
56. E. Filipek, J. Walczak, and P. Tabero, Synthesis and Some Properties of the Phase $\mathrm{Cr}_{2} \mathrm{~V}_{4} \mathrm{O}_{13}$, J. Alloys Compd., 1998, 265, p 121-124
57. P. Tarte, Infra-red Spectra of Inorganic Aluminates and Characteristic Vibrational Frequencies of AlO_{4} Tetrahedra and AlO_{6} Octahedra, Spectrochim. Acta, 1967, 23A, p 21272143
58. C.J. Serna, J.L. Rendon, and J.E. Iglesias, Infrared Surface Modes in Corundum-Type Microcrystalline Oxides, Spectrochim. Acta, 1982, 38A, p 797-806

[^0]: Grażyna Dąbrowska, Piotr Tabero, and Maria Kurzawa, Department of Inorganic and Analytical Chemistry, Szczecin University of Technology, al. Piastów 42, 71-065 Szczecin, Poland. Contact e-mail: grada@ps.pl.

