Phase Relations in the Al_2O_3 - V_2O_5 -MoO₃ System in the Solid State. The Crystal Structure of AlVO₄

Grażyna Dąbrowska, Piotr Tabero, and Maria Kurzawa

(Submitted August 13, 2008; in revised form February 13, 2009)

Phase relations in the ternary oxide system Al₂O₃-V₂O₅-MoO₃ in the solid state in air have been investigated by using the x-ray diffraction (XRD) and differential thermal analysis/thermogravimetric (DTA/TG) methods. It was confirmed that in the subsolidus area of the Al₂O₃-V₂O₅-MoO₃ system, there exist seven phases, that is Al₂O₃, V₂O_{5(s.s.)}, MoO₃, AlVO₄, Al₂(MoO₄)₃, AlVMoO₇, and V₉Mo₆O₄₀. Seven fields, in which particular phases coexist at equilibrium, were isolated. The crystal structure of AlVO₄ has been refined from x-ray powder diffraction data. Its space group is triclinic, $P\overline{1}$, Z = 6, with a = 0.65323(1) nm, b = 0.77498(2) nm, c = 0.91233(3) nm, $\alpha = 96.175(2)^{\circ}$, $\beta = 107.234(3)^{\circ}$, $\gamma = 101.404(3)^{\circ}$, V = 0.42555 nm³. The crystal structure of the compound is isotypic with FeVO₄. Infrared (IR) spectra of AlVO₄ and FeVO₄ are compared.

Keywords	aluminum orthovanadate(V), DTA, IR, phase equilibr			
	XRD			

1. Introduction

The Al₂O₃-V₂O₅-MoO₃ system is the object of in-depth studies, mainly because of the catalytic properties of its components as well as of the compounds occurring in binary systems constituting the ternary system.^[1-6] It can be seen from the literature data that the V₂O₅ and MoO₃ oxides, pure or acting as components of mixtures, are employed in industry as active and selective catalysts of oxidation processes, such as the oxidation of SO₂ to SO₃, benzene to maleate anhydride, methanol to formaldehyde, butene to maleate anhydride and naphthalene, and propylene to acrylaldehyde.^[1,2] γ -Al₂O₃ often acts as a solid support of these catalysts.^[3,4] Moreover, the phases existing in the binary systems, that is, the MoO₃ solid solution in V₂O₅, V₉Mo₆O₄₀, and Al₂(MoO₄)₃, exhibit interesting catalytic properties.^[5,6]

In order to get comprehensive knowledge on mechanisms of the catalytic processes involving some oxide contacts, the information about the solid phases, on the surface of which the elementary catalytic act occurs, is vital. This information can be gained by studying the composition and the type of phases being formed in the system that describes a given catalyst, as well as by determining their structure and properties. In addition, one more necessary research is an investigation of phase relations occurring in such systems under specific thermal conditions. Hence, it was concluded that a study of phase equilibria established in the system of catalytically active oxides $Al_2O_3-V_2O_5-MoO_3$, in the entire range of concentration of the components up to 1000 °C, is justified.

Another important aspect of the authors' work was an attempt to determine the structure of $AIVO_4$ more precisely. Obtaining a monocrystal of this compound using conventional methods is hindered by significant difficulties resulting from the fact that this compound melts incongruently. Therefore, in order to refine the $AIVO_4$ structure, the Rietveld method was applied; the Rietveld method requires only the knowledge of the x-ray powder diffraction pattern of a polycrystalline substance.

1.1 Earlier Studies

A review of the literature data has demonstrated that the oxide components of the studied system are the subject of numerous and comprehensive studies, where their properties, structure, and practical applications are taken into consideration. The binary systems of the studied ternary system, similarly to the oxides, have extensive literature. After having considered the reviewed literature, it was concluded that the V₂O₅-MoO₃ system is the most widely investigated.^[6-14] The remaining binary systems do not have such extensive literature, and the information is often contradictory and ambiguous.^[15-31]

1.2 V₂O₅-MoO₃ System

The components of this system constitute a substitution solid solution of MoO_3 in V_2O_5 in accordance with:

$$(1 - x/2)V_2O_{5(s)} + xMoO_{3(s)} = V_{2-2x}^V V_x^{IV} Mo_xO_{5(s.s.)} + x/4 O_{2(g)}$$
 (Eq 1)

The redundant positive charge is compensated for by reduction of the V^{5+} ions to $V^{4+} \, {\sc [7]}$

Most information found in the literature concerns a compound formed in this system.^[6-14] This compound has

Grażyna Dąbrowska, Piotr Tabero, and Maria Kurzawa, Department of Inorganic and Analytical Chemistry, Szczecin University of Technology, al. Piastów 42, 71-065 Szczecin, Poland. Contact e-mail: grada@ps.pl.

been described with the formula V_2MoO_8 .^[7-10] Nowadays, it is believed that the stoichiometry of this compound corresponds to the formula $V_9Mo_6O_{40}$,^[6,7,11-13] since it has been demonstrated that the compound is formed as a result of a reaction occurring between the components of this system, and, moreover, one of the products of the mentioned reaction is oxygen:

$$9/2 \ V_2 O_{5(s)} + 6 MoO_{3(s)} = V_9 Mo_6 O_{40(s)} + 1/4 O_{2(g)} \eqno(Eq \ 2)$$

The amount of evolved oxygen corresponds to 1/9 of the quantity of vanadium atoms occurring as V^{4+} ions.^[11] The $V_9Mo_6O_{40}$ compound crystallizes in the monoclinic system^[12]; its melting temperature amounts to 635 °C.^[11]

Diagrams of the phase equilibria being established in the V_2O_5 -MoO₃ system have been worked out as well.^[8,11,14] They are of the same type and differ from each other only by the composition of solid solution of MoO₃ in V_2O_5 and the formula of the compound crystallizing in the V_2O_5 -MoO₃ system is ($V_9Mo_6O_{40}$ or V_2MoO_8).

1.3 Al₂O₃-V₂O₅ System

It has been found that only one compound, aluminum orthovanadate(V), is formed in the Al₂O₃-V₂O₅ system.^[15-25] Basic properties of AlVO₄ are known. It melts incongruently with an accompanying deposition of α -Al₂O₃ at a temperature that is reported differently, depending on the information source: 695 °C,^[15] 760 °C,^[16] and 775 °C.^[17] The authors have established that AlVO₄ melts at 745 ± 5 °C.^[21] According to Cheshnitski, the melting temperature of AlVO₄ depends on its synthesis conditions.^[18] Accordingly, the melting temperature of AlVO₄ prepared by roasting an equimolar Al₂O₃/V₂O₅ mixture in air is 760 °C, whereas the sample heated additionally for 4 h at 650 °C in the atmosphere of oxygen melts at 778 °C. Only Barham predicates that AlVO₄ is stable up to 625 °C, after that it undergoes decomposition yielding two solids: Al₂O₃ and V₂O₅.^[20]

Under normal pressure, AlVO₄ does not display polymorphism. Aluminum orthovanadate(V) crystallizes in the triclinic system^[17,19]; parameters of its unit cell calculated on the basis of its powder diffraction pattern are: $a = 0.648 \pm 0.003$ nm, $b = 0.775 \pm 0.002$ nm, $c = 0.909 \pm 0.002$ nm, $\alpha = 96.72 \pm 0.3^{\circ}$, $\beta = 105.85 \pm 0.2^{\circ}$, $\gamma = 101.41 \pm 0.2^{\circ}$, $Z = 6.^{[19]}$ AlVO₄ has also been an object of spectroscopic studies: infrared (IR),^[17,19] Raman spectroscopy,^[22] ⁵¹V nuclear magnetic resonance (NMR).^[23] A diffuse reflection spectrum of this compound is known, too.^[24]

A full structure of AlVO₄ has not been refined yet, although it has been known for a long time that AlVO₄ is isostructural with FeVO₄, the structure of which has been determined using x-ray single-crystal diffraction.^[25] The isostructural character of both orthovanadates is evidenced by a formation of a continuous solid solution in the AlVO₄-FeVO₄ system.^[19] The aim of this work was a refinement of the AlVO₄ crystal structure, using a powder diffraction pattern of this phase and the structural parameters of FeVO₄.^[25] Three versions of the phase diagram of the Al_2O_3 - V_2O_5 system are known.^[15,18,20]

1.4 Al₂O₃-MoO₃ System

The components of the next binary system, Al_2O_3 -MoO₃, form a compound—aluminum molybdate(VI).^[26-31] $Al_2(MoO_4)_3$ possesses two polymorphic modifications: a monoclinic form stable below the phase transition temperature, that is, 200 °C, and an orthorhombic form occurring at temperatures higher than the temperature of transformation.^[26] The structure of both polymorphs has been established.^[26-31] $Al_2(MoO_4)_3$ melts congruently at 940 °C.^[29]

The phase diagram of the Al_2O_3 -MoO₃ system has not been worked out so far.

1.5 Al₂O₃-V₂O₅-MoO₃ System

In the solid state of the Al₂O₃-V₂O₅-MoO₃ ternary system, only one compound that contains all elements is formed: AlVMoO₇.^[32,33] This compound is also formed as a result of a reaction conducted in the solid state between AlVO₄ and MoO₃.^[32] The structure of AlVMoO₇ has been solved by direct methods from high-resolution x-ray powder diffraction data and refined by the Rietveld method.^[34] This compound crystallizes in the orthorhombic system and belongs to the space group *Pmcn*.^[34] AlVMoO₇ melts incongruently at 690 °C, depositing two phases: Al₂(MoO₄)₃ and α -Al₂O₃.^[55]

Following their earlier studies, the authors have constructed a phase diagram of the AlVO₄-MoO₃ system, in which the AlVMoO₇ compound^[36] occurs, as well as phase diagrams of the systems AlVMoO₇-V₂O₅^[37] and V₉Mo₆O₄₀-AlVMoO₇.^[38] The reactivity of Al₂(MoO₄)₃ toward AlVO₄^[39] and V₂O₅^[40] in the solid state has been investigated.

A full phase diagram of the Al₂O₃-V₂O₅-MoO₃ system, covering its subsolidus area, has not yet been worked out.

2. Experimental

2.1 Synthesis

The following oxides were employed in the experiments: V_2O_5 and Al_2O_3 —analytically pure commercial products of POCh (Gliwice, Poland)—and MoO₃ obtained by thermal decomposition of (NH₄)₆Mo₇O₂₄·4H₂O at 150 to 450 °C in air.

During the present studies, the following phases were identified: $Al_2(MoO_4)_3$, $AlVMoO_7$, $AlVO_4$, and $V_9Mo_6O_{40}$; in addition, the solid solution of MoO_3 in V_2O_5 , containing about 30 mol% MoO_3 was used. The $V_9Mo_6O_{40}$ compound was obtained by the precipitation method earlier described by Jarman and Cheetham.^[13]

Polycrystalline AlVO₄ was prepared by precipitation, adopting the method of synthesis applied to iron(III) orthovanadate(V), described by Owen and Kung.^[41] In this method two solutions were prepared. One of them contained 53.5760 g of an analar NH₄VO₃ (Sigma-Aldrich Chemie

GmbH, Steinheim, Germany) and 121.8535 g of an analar $H_2C_2O_4$ ·2 H_2O (POCh Gliwice, Poland) dissolved in 758 mL of redistilled water; the other solution was prepared by dissolving 181.6435 g of an analar Al(NO₃)₃·9 H_2O (POCh, Gliwice, Poland) in the same volume of water. Afterward the solutions were mixed and gently heated on a water bath until a thick paste had been obtained. The paste was first dried in a dryer at 100 °C for 24 h and at 200 °C for 48 h and then was calcined in a syllite furnace at 550 °C for 48 h, and after grinding the calcination was continued at 650 °C for 72 h. The final product was monophase, as proved by x-ray diffraction (XRD) analysis. Differential thermal analysis (DTA) has shown that it melts at 745 ± 5 °C.

A preparation used for the experiments was also FeVO₄ prepared by heating an equimolar Fe_2O_3/V_2O_5 mixture under conditions described by Walczak et al.^[42]

The remaining phases were obtained by reactions occurring in the solid state among appropriate mixtures of Al_2O_3 , V_2O_5 , and MoO_3 , under the conditions described in detail elsewhere.^[11,29,32]

Twenty-four samples were prepared from the oxide components of the Al_2O_3 - V_2O_5 -MoO₃ system and used in the test (Table 1). The reacting substances were weighed in appropriate amounts, homogenized by grinding, pelletized, and heated, depending on the composition of the sample, in order to achieve the state of equilibrium under various conditions. This final state was found to be established on

the basis of XRD analysis of the samples after successive stages of heating. All samples were rapidly cooled to the ambient temperature after the last stage of heating, and then their investigation was conducted using DTA and XRD.

Moreover, a series of mixtures were prepared from $AIVO_4$ and Al_2O_3 as well as from $AIVO_4$ and V_2O_5 with the intent to carry out further tests verifying the phase diagram of the Al_2O_3 - V_2O_5 system. After homogenization, all of those mixtures were examined with the DTA method.

The phase diagram of the Al_2O_3 -MoO₃ system was constructed on the basis of the DTA curves taken from the mixtures $Al_2(MoO_4)_3 + \alpha$ - Al_2O_3 and $Al_2(MoO_4)_3 + MoO_3$.

2.2 IR and Scanning Electron Microscopy Measurements

AlVO₄ and FeVO₄ were examined by IR spectroscopy. The IR spectra were recorded at wave numbers 1500 to 250 cm⁻¹ using a spectrometer of SPECORD M80 (Carl Zeiss, Jena, Germany). A technique used in the measurements was pressing pastilles with KBr at a weight proportion of 1:300.

The apparatus used for measuring the size of $AIVO_4$ crystallites and determining the qualitative and quantitative composition of this phase was a scanning electron microscope of the JSM-1600 type (JOEL Ltd., Tokyo, Japan), equipped with an x-ray microanalyzer, ISIS 300 (Oxford Instruments, Abingdon, UK).

Table 1	The composition of the initia	l mixtures, the	conditions of	f preparation,	and the	XRD ph	nase analysis	results
after the	final stage of heating the sam	ples						

	Composition of the initial mixtures, mol%					
No.	Al ₂ O ₃	V ₂ O ₅	D ₅ MoO ₃	Conditions of preparation	Phases found	
1	5.00	15.00	80.00	500 °C \rightarrow 550 °C (72 h) + 580 °C (48 h) + 580 °C (24 h)	Al ₂ (MoO ₄) ₃ , V ₉ Mo ₆ O ₄₀ , MoO ₃	
2	15.00	5.00	80.00			
3	5.00	30.00	65.00			
4	20.00	15.00	65.00	500 °C \rightarrow 550 °C (72 h) + 560 °C (48 h)	Al ₂ (MoO ₄) ₃ , AlVMoO ₇ , V ₉ Mo ₆ O ₄₀	
5	10.00	30.00	60.00			
6	5.00	38.00	57.00			
7	5.00	45.00	50.00	500 °C \rightarrow 550 °C (72 h) + 560 °C (48 h)	V9M06O40, AlVM0O7, V2O5(s.s.)	
8	20.00	30.00	50.00			
9	5.00	55.00	40.00			
10	30.00	40.00	30.00	500 °C \rightarrow 550 °C (72 h) + 570 °C (48 h) + 570 °C (48 h)	AlVMoO7, AlVO4, V2O5(s.s.)	
11	25.00	55.00	20.00			
12	40.00	50.00	10.00			
13	15.00	70.00	15.00	500 °C \rightarrow 550 °C (72 h) + 570 °C (48 h) + 570 °C (48 h)	$V_2O_{5(s.s.)}$, AlVO ₄	
14	10.00	85.00	5.00			
15	35.00	60.00	5.00			
16	55.00	30.00	15.00	500 °C \rightarrow 550 °C (48 h) + 580 °C (48 h) + 600 °C (48 h)	AlVMoO7, Al2O3, AlVO4	
17	60.00	20.00	20.00	+ 620 °C (48 h)		
18	33.00	28.00	39.00			
19	45.00	18.00	37.00	500 °C \rightarrow 550 °C (48 h) + 580 °C (48 h) + 600 °C (48 h)	AlVMoO ₇ , Al ₂ O ₃	
20	65.00	12.00	23.00	+ 620 °C (48 h)		
21	80.00	7.00	13.00			
22	65.00	5.00	30.00	500 °C \rightarrow 550 °C (72 h) + 600 °C (48 h) + 620 °C (48 h)	Al ₂ (MoO ₄) ₃ , Al ₂ O ₃ , AlVMoO ₇	
23	45.00	10.00	45.00	+ 640 °C (48 h) + 670 °C (48 h)		
24	29.00	15.00	56.00			

2.3 X-Ray Powder Diffraction

The kind of phases contained in the samples was identified on the basis of x-ray phase analysis results (diffractometer DRON-3 made in Burevestnik, Sankt Petersburg, Russia, radiation Co K α /filter Fe, $\lambda_1 = 0.178892$ nm, $\lambda_2 = 0.179278$ nm) and the data found in PDF files.^[43]

The powder diffraction pattern of AlVO₄ was recorded at an angular range of 8.5 to $120^{\circ} 2\theta$, the step size $0.02^{\circ} (2\theta)$, time per step = 5 s. The intensity of a diffracted beam was recorded using a scintillation counter. The temperature of data collection was equal to 25 °C.

2.4 DTA/TG Measurements

The DTA/TG investigations were performed using a Paulik-Paulik-Erdey derivatograph, a product of MOM (Budapest, Hungary). The measurements were conducted in air, in the temperature range 20 to 1000 °C and at a constant heating rate of 10 °C/min. All investigations were performed in quartz crucibles. The mass of investigated samples always amounted to 500 mg. The accuracy of temperature reading determined on the basis of repetitions was established as ± 5 °C.

3. Results and Discussion

3.1 Binary Systems

The work was begun with an elaboration of phase diagrams of the binary systems that comprise the ternary $Al_2O_3-V_2O_5-MoO_3$ system.

The binary system V_2O_5 -MoO₃ did not require any verification tests, because the phase equilibria established in this system did not differ from the version presented by Bielański et al.,^[11] and the only difference was the melting temperature of the binary eutectic, which, according to the authors' research, is equal to 610 °C.

Phase diagrams of the Al_2O_3 - V_2O_5 and Al_2O_3 -MoO₃ systems were constructed on the basis of temperatures of thermal effects recorded on DTA curves of studied samples. The temperatures of solidus lines were defined based on temperatures of the onsets of the first endothermic effects. The liquidus curves were also established from the temperatures of the onsets of the last effects recorded on the DTA curves. The kind of solid phases remaining at equilibrium with liquid was identified based on XRD analysis results for the samples rapidly cooled to room temperature after they were heated at appropriate temperatures.

It is apparent in the phase diagram of the Al_2O_3 -MoO₃ system (Fig. 1) that this is a simple eutectic system with a compound that melts congruently at 940 °C. Aluminum molybdate(VI) forms two eutectic mixtures: one with Al_2O_3 (~35 mol% Al_2O_3 and ~65 mol% MoO₃), melting at 820 °C, and the other, however, with MoO₃ (10 mol% Al_2O_3 and 90 mol% MoO₃) melting at 740 °C.

The verification of the Al_2O_3 - V_2O_5 phase diagram (Fig. 2) has proved that at the content of ~8 mol% Al_2O_3 and ~92 mol% V_2O_5 , the components heated to ~640 °C form a eutectic: $AlVO_4 + V_2O_5$. Its melting temperature determined by the authors is the same as that reported by Cirilli and Burdese,^[15] but it differs from the temperature suggested by Cheshnitski.^[18]

Fig. 1 Phase diagram of the Al₂O₃-MoO₃ system

Fig. 2 Phase diagram of the Al₂O₃-V₂O₅ system

According to the authors' studies, $AIVO_4$ melts incongruently at 745 °C, releasing the solid α -Al₂O₃. The AIVO₄ melting temperature determined by the authors is different from the melting temperatures presented in other works.^[15-17]

3.2 The Al₂O₃-V₂O₅-MoO₃ Ternary System

Table 1 presents the composition of samples subjected to the tests and their preparation conditions, as well as XRD analysis results for all samples in the state of equilibrium. The data provided in Table 1 confirm the published conclusions from earlier investigations of phase equilibria established in the binary systems that are cross sections of the ternary system.^[36-40]

The final verification of the entire subsolidus area consisted of preparing appropriate mixtures of the phases that were, on the basis of the results of earlier studies, considered to be at equilibrium within certain partial subsystems. The compositions of these mixtures, converted into the components of the Al₂O₃-V₂O₅-MoO₃ system, corresponded to the compositions of samples presented in Table 1. These mixtures were subjected to long-term heating at temperatures slightly lower than the temperatures of corresponding solidus planes, and next they were rapidly cooled to room temperature. The XRD analysis has shown that, despite the long-term heating, at the temperatures close to the start of melting the phase composition of none of these preparations underwent any changes. This confirms that the initial mixtures corresponded, as to their composition, to the earlier identified phases coexisting at equilibrium within particular fields of subsolidus area.

All results of conducted investigations, namely the phase diagrams of the cross sections as well as the outcome of

tests performed with the samples of the basic and the verification series, allowed the authors to determine a phase diagram for the subsolidus area of Al_2O_3 - V_2O_5 -MoO₃ over the entire concentration range of the components (Fig. 3). The onset temperatures of melting for all the mixtures coexisting within a given partial subsystem have been plotted in the diagram. These were the temperatures of the first endothermic effect, recorded on the DTA curves taken from the preparations corresponding to the given partial subsystem. Also the compositions of the binary eutectics (e) and the parameters of the peritectic points (p) in the binary systems are shown in the diagrams.

It can be concluded from the phase diagram presented in Fig. 3 that the subsolidus area of the Al_2O_3 - V_2O_5 -MoO₃ system is composed of seven partial subsystems. The temperatures of the solidus planes covering four of the seven fields have been determined by measuring the melting temperatures of ternary eutectics:

- I. $[Al_2(MoO_4)_3 V_9Mo_6O_{40} MoO_3] (t_e = 605 \text{ °C})$
- II. $[Al_2(MoO_4)_3 AlVMoO_7 V_9Mo_6O_{40}] (t_e = 600 \text{ °C})$
- III. [AlVMoO₇-V₉Mo₆O₄₀-V₂O_{5(s.s.)}] ($t_e = 580 \text{ °C}$)
- IV. $[AIVO_4 AIVMoO_7 V_2O_{5(s,s,)}]$ ($t_e = 595$ °C)

The temperatures of the solidus planes of further two fields were defined by the temperatures of ternary quasiperitectic reactions. Hence, the melting temperature of the $[AlVMoO_{7(s)} + Al_2O_{3(s)} + AlVO_{4(s)}]$ field was determined as the temperature at which the following reaction occurs:

$$Liquid + Al_2O_{3(s)} \rightleftharpoons AlVMoO_{7(s)} + AlVO_{4(s)}$$
 (Eq 3)

whereas for the field $[Al_2(MoO_4)_{3(s)} + AlVMoO_{7(s)} + Al_2O_{3(s)}]$ it was the temperature of the reaction:

Fig. 3 Projection of the subsolidus area of Al₂O₃-V₂O₅-MoO₃ onto the plane of the concentration triangle of the component

$$Liquid + Al_2O_{3(s)} + Al_2(MoO_4)_{3(s)} \rightleftharpoons AlVMoO_{7(s)} \quad (Eq 4)$$

The melting of the [AlVO_{4(s)} + V₂O_{5(s.s.)}] field, because of the occurrence of solid solutions of MoO₃ in V₂O₅ possessing variable contents of MoO₃, runs in a range of temperatures, from the melting temperature of binary eutectics formed within the lateral systems, AlVO₄-V₂O₅ and V₂O_{5(s.s.)}-V₉Mo₆O₄₀, up to 595 °C.

3.3 Crystal Structure of AIVO₄

Scanning electron microscopy investigations of the AlVO₄ sample have shown that most of the crystallites have a dimension of 0.5 to 1.0 μ m, and only few of them are larger, with dimensions of 1.0 to 3.0 μ m. An analysis of the largest crystallites performed by an x-ray microprobe has shown that they contain vanadium, aluminum, and oxygen. A fixed molar ratio of Al:V was very close to the theoretical value for AlVO₄ and was equal to 50.66:49.34.

The powder diffraction pattern of the AlVO₄ synthesized by the authors differed slightly from the published one^[17,19] as to the number of reflections and the corresponding interplanar distances. An analysis of the diffraction pattern was carried out using the program FULLPROF^[44] and the Rietveld method.^[45-47] The structural parameters of FeVO₄, space group $P\bar{1}$, Z = 6, were used as a primary model for the refinement.^[25] The background was determined graphically and approximated by linear interpolation among 50

Table 2Results of preliminary refinements (patternmatching) by a Rietveld program for AlVO4

Unit cell parameters	
a, nm	0.65323(1)
b, nm	0.77498(2)
<i>c</i> , nm	0.91233(3)
α, deg	96.175(2)
β, deg	107.234(3)
γ, deg	101.404(3)
Volume, nm ³	0.42555
Peak shape function pseudo-Voigt mixing parameter, η	0.4111
Scale factor	0.004648
Asymmetry parameter	-0.07(1)
Zero-point correction, deg (2θ)	-0.057(3)
Half-width parameters	
U	0.043(9)
V	-0.032(9)
W	0.025(2)
Reliability factors	
$R_{\rm wp}$, %	2.84
$R_{\rm exp}, \%$	2.36
χ ²	1.45

points. The number of the parameters refined was 86, and 709 reflections were observed. The definitions of the reliability factors corresponded to the usual ones.^[45] Table 2

Table 3Atomic coordinates and isotropic Debye-Wallerparameter B for AlVO4 (esd given in parentheses)

	Ato	mic coordin				
Atom 1	<i>x/a</i> 2	<i>y/b</i> 3	<i>z/c</i> 4	Isotropic Debye-Waller parameters ($B \times 10^2$), nm ² 5		
Al(1)	0.743(3)	0.697(2)	0.399(2)	4.3		
Al(2)	0.468(3)	0.885(2)	0.212(2)	3.2		
Al(3)	0.953(3)	0.306(2)	0.999(2)	2.5		
V(1)	0.002(1)	0.995(1)	0.257(1)	3.3		
V(2)	0.199(1)	0.605(1)	0.347(1)	3.1		
V(3)	0.514(1)	0.295(1)	0.125(1)	2.4		
O(1)	0.630(3)	0.499(3)	0.260(3)	1.7		
O(2)	0.259(3)	0.433(3)	0.429(3)	1.1		
O(3)	0.034(4)	0.699(3)	0.428(2)	0.5		
O(4)	0.166(4)	0.093(3)	0.431(3)	3.6		
O(5)	0.458(4)	0.743(3)	0.362(3)	1.9		
O(6)	0.755(4)	0.876(3)	0.261(2)	0.7		
O(7)	0.518(4)	0.119(3)	0.222(2)	2.6		
O(8)	0.157(4)	0.882(3)	0.185(3)	0.7		
O(9)	0.362(4)	0.733(3)	0.017(3)	3.0		
O(10)	0.255(4)	0.304(3)	0.042(3)	1.5		
O(11)	0.955(4)	0.160(3)	0.152(3)	2.6		
O(12)	0.047(4)	0.513(4)	0.148(3)	3.9		
esd, estimated standard deviation						

shows results of preliminary refinements (so-called pattern matching) of the AlVO₄ diffractogram.

The x-ray calculated density $\rho_{rtg} = 3.319 \text{ g/cm}^3$ is close to the pycnometric density $\rho_{exp} = 3.32(5) \text{ g/cm}^3$ determined by the method described in Kluz and Waclawska,^[48] for M = 141.92.

Table 3 shows atomic coordinates in the unit cell and the Debye-Waller isotropic temperature factors obtained from the Rietveld refinement of the AlVO₄ structure.

It is possible to differentiate three crystallographically independent aluminum atoms in the crystal lattice of AlVO₄. Two of them, Al(1) and Al(3), are in distorted oxygen octahedra. The third aluminum atom, Al(2), is surrounded by five oxygen atoms that lie at corners of a trigonal bipyramid, distorted as well. The three aluminum atoms and three others related by a center of symmetry constitute a doubly bent chain composed of six edge-sharing polyhedra (four AlO₆ and two AlO₅) (Fig. 4). Each such six-member chain makes by itself an Al₆O₂₄ unit that is connected with distorted VO₄ tetrahedra through common oxygen vertices. The O-Al-O angles in the AlO₆ octahedra vary from the ideal values, 180 and 90°, by a maximum of 11.2°, and the Al-O bond lengths are contained within the range of 0.176 to 0.204 nm. The length of the shortest Al-O linkage (0.176 nm) in the Al(1)O₆ octahedron differs considerably from 0.1895 nm-a typical value for an AlO₆ octahedron, being close to the Al-O bond lengths in ideal AlO₄ tetrahedra, namely, 0.175 nm.^[49] On the other hand, the longest Al-O bond in the AlO₆ octahedra, that is, the Al(3)-O(12) bond, with its length equal to 0.204 nm, is

Fig. 4 Doubly bent chain of Al_6O_{24} unit, projected onto the *a-b* plane

much longer than a typical bond. These facts point out a considerable distortion of the AlO_6 octahedra.

The aluminum atom Al(2) situated in a distorted trigonal bipyramid is linked by five bonds with oxygen atoms, the shortest bond length amounts to 0.176 nm, and the longest—0.197 nm versus the value of 0.184 nm—is typical for the AlO₅ trigonal bipyramid. Aluminum of the same coordination in trigonal bipyramids is found in the following minerals: grandiderite, (Mg,Fe)Al₃SiBO₉,^[50] augelite, Al₂(PO₄)(OH)₃,^[51] andalusite, Al₂SiO₅.^[52] In these minerals the AlO₅ and AlO₆ polyhedra combine by sharing common edges.

In spite of the significant distortion of the AIO_x polyhedra, the mean values of the Al-O bond lengths in the AlO₆ octahedra equal to 0.190 and 0.194 nm are explicitly longer than the mean value (0.184 nm) for the Al-O bonding in a perfect AlO₅ trigonal bipyramid. On the other hand, the distances between the aluminum atoms Al(3)-Al(3), Al(1)-Al(2), and Al(2)-Al(3), making up 0.294, 0.283, and 0.285 nm, respectively, are longer than the value calculated for ideal edge-sharing AlO₆ polyhedra, 0.267 nm. The factor responsible for the elongation of the Al-Al bonds is ionic repulsion between the Al³⁺ ions in the AlO_x polyhedra combined by common edges.

Three independent vanadium atoms occur in distorted VO₄ tetrahedra. The VO₄ tetrahedra share neither edges nor vertices. The mean value of bond angles in the VO₄ tetrahedra differs merely by 0.1° from the expected value, 109.5°. However, in an extreme case, for the angle 0(8)-V(1)-O(6) the difference makes up 8.0° . The V-O bond lengths in individual tetrahedra are confined within the range of 0.163 to 0.178 nm. A confrontation of these values with the expected value of 0.1715 nm for the V-O bond length in an ideal VO₄ tetrahedron indicates a considerable deformation of the VO₄ tetrahedra.

A comparison between the structural data for $AIVO_4$ and $FeVO_4$ gives an indication that the average M-O bond lengths, where M = Al, Fe, in MO₆ and MO₅ polyhedra building the $AIVO_4$ and $FeVO_4$ structures are confined within the range of difference as little as 0.01 to 0.006 nm

Fig. 5 IR spectra of AlVO₄ (curve a) and FeVO₄ (curve b)

and reflect approximately the difference between the AI^{3+} and Fe³⁺ ionic radii in appropriate coordinations.^[25,49] The differences between the corresponding mean values of V-O bond lengths in the VO₄ tetrahedra are even smaller. Only the V(1)O₄ tetrahedron in the AIVO₄ structure is noticeably smaller than its counterpart in the FeVO₄ structure.

The shortest bonds V(1)-O(4) of 0.163 nm in AlVO₄ and of 0.1649 nm in FeVO₄ do not possess a character of double bonds, as the oxygen atom O(4) is additionally combined with the atoms Al(1) or Fe(1).

In both vanadate structures the VO_4 tetrahedra are separate, because they do not share either vertices or edges. Consequently, $AIVO_4$ and $FeVO_4$ have been reckoned among orthovanadates.

It can also be concluded from the comparison of the structural data for $AIVO_4$ and $FeVO_4$, pertaining to appropriate bond lengths and angles, that the structural distortion of $AIVO_4$ is greater than that of $FeVO_4$. The infrared spectrum of $AIVO_4$ provides further evidence for this observation.

Figure 5 shows IR spectra of AlVO₄ (curve a) and FeVO₄ (curve b). In each of them four fundamental absorption bands can be distinguished. The IR spectrum of AlVO₄ is characterized by a larger number of discrete absorption bands when compared with the FeVO₄ spectrum. The reason for this fact is a stronger distortion of the AlVO₄ structure against that of the FeVO₄ structure. All absorption bands in the vibration spectrum of AlVO₄ are shifted toward higher wave numbers when compared with the IR spectrum of FeVO₄. As the ionic radius of Al^{3+} is smaller than the Fe³⁺ radius, all the Al-O bonds in AlO₆ and AlO₅ are shorter than the Fe-O bonds in FeVO₄. This also entails shortening of the V-O bonds in the VO₄ tetrahedra of AIVO₄, compared with FeVO₄, and as a result of this an explicit contraction of the crystal lattice: FeVO₄ with V = 0.46925 nm³ versus AlVO₄ with $V = 0.42555 \text{ nm}^3$.

In the vibration spectrum of AlVO₄, the first absorption band lying between 1100 and 830 cm⁻¹ displays absorption maxima at 1010, 974, 920, 894, and 852 cm⁻¹. This band reflects stretching vibrations of the V-O bonds in the VO₄ tetrahedra.^[17,19,53-56] The second absorption band, lying

over the wave-number range of 830 to 660 cm⁻¹ with its absorption maxima at 814, 770, 747, and 722 cm⁻¹, has been ascribed to stretching vibrations of the Al-O bonds in the AlO₅ trigonal bipyramids^[19,57] and of the shortest Al-O bond (0.176 nm) in the Al(1)O₆ octahedron. The third band exhibits its absorption maxima at 618, 588, 552, 536, and 522 cm⁻¹. They correspond to the Al-O stretching vibrations of AlO₆ within the Al₆O₂₄ chains.^[57] Absorption within this wave-number range has been also noticed in the IR spectra of the MAl₂O₄ spinels^[57] and of α -Al₂O₃.^[58] In the last wave-number range, namely, at 520 to 280 cm^{-1} , the vibrational spectrum of AlVO₄ includes a number of distinct absorption bands. They are produced by bending vibrations of the V-O bonds in the VO4 tetrahedra and of the Al-O in the AlO₅ and AlO₆ polyhedra. It cannot be excluded that within this wave-number range the absorption bands are brought about also by bending vibrations of Al-O-V or by vibrations of a mixed character.[19,53-56,58]

4. Summary

The investigations conducted within this work have allowed the authors to succeed with:

- A verification of binary systems constituting the title ternary system, that is of the Al₂O₃-MoO₃ and Al₂O₃-V₂O systems. This verification comprised: (a) It has been proved that the Al₂O₃-MoO₃ system is a simple eutectic system. Aluminum molybdate(VI), a compound produced within this system, forms two eutectic mixtures: one with Al2O3 (~35% mol Al2O3 and ~65% mol MoO₃), melting at 820 °C, and the other, however, with MoO₃ (10% mol Al₂O₃ and 90% mol MoO₃) melting at 740 °C. (b) It has been confirmed that in the Al₂O₃-V₂O₅ system its components form an $AlVO_4 + V_2O_5$ (~8 mol% Al_2O_3 eutectic. and ~92 mol % V₂O₅), which melts at ~640 °C. It has been established that aluminum orthovanadate(V) melts incongruently at 745 °C, depositing α -Al₂O₃.
- Defining the phase equilibria being established in the ternary system, i.e., Al₂O₃-V₂O₅-MoO₃ over the entire range of component concentrations. It has been confirmed that in the subsolidus area of the Al₂O₃-V₂O₅-MoO₃ system there exist seven phases, that is Al₂O₃, V₂O₅(s.s.), MoO₃, AlVO₄, Al₂(MoO₄)₃, AlVMoO₇, V₉Mo₆O₄₀. Seven fields in which particular phases coexist at equilibrium have been delimited.
- Constructing a phase diagram for the subsolidus area of the Al₂O₃-V₂O₅-MoO₃ system in the entire range of component concentrations (Fig. 3).
- Refining the structure of AlVO₄, a compound occurring in the Al₂O₃-V₂O₅ system, by means of the Rietveld method. The space group is triclinic, $P\bar{1}$, Z = 6, with a = 0.65323(1) nm, b = 0.77498(2) nm, c = 0.91233(3) nm, $\alpha = 96.175(2)^{\circ}$, $\beta = 107.234(3)^{\circ}$, $\gamma = 101.404(3)^{\circ}$, V = 0.42555 nm³.
- Presenting a comparison between the IR spectra of $AIVO_4$ and $FeVO_4$.

References

- A. Bielański and M. Najbar, V₂O₅-MoO₃ Catalysts for Benzene Oxidation, *Appl. Catal.*, 1997, **157**, p 223-261
- A. Parmaliana, F. Arena, F. Frusten, N. Giordano, M.S. Scurrell, and V. Sokolovskii, Partial Oxidation of Methane to Formaldehyde on Bulk and Silica Supported MoO₃ and V₂O₅ Catalysts: Surface Features and Reaction Mechanism, *Stud. Surf. Sci. Catal.*, 1997, **107**, p 2328-2332
- J. Tichy, Oxidation of Acrolein to Acrylic Acid over Vanadium-Molybdenum Oxide Catalysts, *Appl. Catal.*, 1997, 157, p 363-385
- T. Kabe, W. Qian, Y. Hirai, L. Li, and A. Ishihara, Hydrodesulfurization and Hydrogenation Reactions on Noble Metal Catalysts, *J. Catal.*, 2000, **190**, p 191-198
- J.M. Lewis, R.A. Kydal, and J. Catal, The MoO₃-Al₂O₃ Interaction: Influence of Phosphorus on MoO₃ Impregnation and Reactivity in Thiophene HDS, *J. Catal.*, 1992, **136**, p 478-486
- I.L. Botto, M. Vassalo, G. Fierro, D. Cordischi, M. Inversi, and G. Minelli, Some Aspects of β-V₉Mo₆O₄₀ Reduction: TPR, XRD, SEM, IR and EPR Spectroscopic Studies, *J. Mater. Chem.*, 1997, 7, p 2286-2297
- H. Schadow, H. Oppermann, and B. Wehner, Untersuchungen zum ternären System V/Mo/O, Z. Anorg. Allg. Chem., 1995, 621, p 624-629, in German
- N. Strupler and A. Morette, Sur les equilibres liquide-solide dans le de M^{IIe}, *C.R. Acad. Sci. Paris*, 1965, 260, p 1971-1973, in French
- A. Magneli and B. Blomberg, Studies on the Vanadium Pentaoxide-Molybdenum Trioxide System, Acta Chem. Scand., 1951, 5, p 584-585
- H.A. Eick and L. Kihlborg, The Crystal Structure of V₂MoO₈, Acta Chem. Scand., 1966, 20, p 1658-1666
- A. Bielański, K. Dyrek, J. Poźniczek, and E. Wenda, Studies on the V₂O₅-MoO₃ System: Magnetic Properties, *Bull. Acad. Polon. Sci. Ser. Sci. Chim.*, 1971, **19**, p 513-521
- R.C.T. Slade, A. Ramanan, B.C. West, and E. Prince, The Structure of V₉Mo₆O₄₀ Determined by Powder Neutron Diffraction, J. Solid State Chem., 1989, 82, p 65-69
- R.H. Jarman and A.K. Cheetham, An Investigation of Phase Equilibria in the System MoO₃-V₂O_x (4 < x < 5) by Analytical Electron Microscopy, *Mater. Res. Bull.*, 1982, 17, p 1011-1015
- V.L. Volkov, G.Sh. Tynkacheva, A.A. Fotiev, and E.V. Tkachenko, Sistema V₂O₅-MoO₃, *Zh. Neorg. Khim.*, 1972, 17, p 2803-2805
- V. Cirilli and A. Burdese, Sulla corrosione dei metalli ad alta temperatura da parte dell' anidride vanadica, *Metall. Ital.*, 1957, 49, p 320-322, in Italian
- A.A. Fotiev, L.L. Surat, G.A. Korablev, and A.H. Tretiakov, Fazovyje sootnovieniav sistemie V₂O₅-Fe₂O₃-Al₂O₅-Cr₂O₃, *Zh. Neorg. Khim.*, 1981, 26, p 242-248, in Russian
- O. Yamaguchi, T. Uegaki, Y. Miyata, and K. Shimizu, Formation of AlVO₄ Solid Solution from Alkoxides, *J. Am. Ceram. Soc.*, 1987, **70**, p 198-200
- S.M. Cheshnitski, A.A. Fotiev, and L.L. Surat, Sistema V₂O₅-Al₂O₃, *Zh. Neorg. Khim.*, 1983, **28**, p 1342-1344, in Russian
- E.J. Baran and I.L. Botto, Kristallographische Daten und IR-Spektrum von AlVO₄, *Monatsh. Chem.*, 1977, **108**, p 311-318, in Germany
- D. Barham, An Investigation of the System V₂O₅-Al₂O₃, Trans. Br. Ceram. Soc., 1965, 64, p 371-375
- M. Kurzawa and G. Dabrowska, Subsolidus Phase Equilibria in the System AlVO₄-MoO₃, *J. Therm. Anal.*, 1995, 45, p 1049-1053

- F.O. Hardcastle and I.E. Wachs, Determination of Vanadium-Oxygen Bond Distances and Bond Orders by Raman Spectroscopy, J. Phys. Chem., 1991, 95, p 5031-5041
- H. Eckert and I.E. Wachs, Solid-State ⁵¹V NMR Structural Studies on Supported Vanadium(V) Oxide Catalysts: Vanadium Oxide Surface Layers on Alumina and Titania Supports, *J. Phys. Chem.*, 1989, **93**, p 6796-6805
- T. Groń, H. Duda, J. Krok-Kowalski, J. Walczak, E. Filipek, P. Tabero, A. Wyrostek, and K. Bärner, Electrical and Optical Properties of AVO₄ (A = Fe, Cr, Al) Compounds, *Radiat. Effects Defects Solids*, 1995, **133**, p 341-348
- B. Robertson and E. Kostiner, Crystal Structure and Mössbauer Effect Investigation of FeVO₄, *J. Solid State Chem.*, 1972, 4, p 29-37
- P. Forzatti, C.M. Mari, and P. Villa, Defect Structure and Transport Properties of Cr₂(MoO₄)₃ and Al₂(MoO₄)₃, *Mater: Res. Bull.*, 1987, 22, p 1593-1602
- A.W. Sleight and L.H. Brixner, A New Ferroelastic Transition in Some Al₂(MoO₄)₃ Molybdates and Tungstates, *J. Solid State Chem.*, 1973, 7, p 172-174
- W.T.A. Harrison and A. Cheetham, The Crystal Structure of Aluminum Molybdate, Al₂(MoO₄)₃, Determined by Time-of-Flight Power Neutron Diffraction, *J. Solid State Chem.*, 1988, 76, p 328-333
- L.M. Plyasova and L.M. Kefeli, Rentgenograficzeskije isliedovania molibdatov chroma i aluminia, *Izv. Akad. Nauk SSSR, Neorg. Mater.*, 1967, 3, p 906-908, in Russian
- V.K. Trunov, V.V. Lucenko, and L.M. Kova, O bzaimodiejstvi okisi aluminia z triehokisjami wolframa i molibdena, *Izv. Vyssh. Uchebn. Zaved. SSSR, Khim. Khim. Tekhnol.*, 1967, 4, p 375-376, in Russian
- K. Nassau, H.J. Levinstein, and G.M. Loiacono, A Comprehensive Study of Trivalent Tungstates and Molybdates of the Type L₂(MoO₄)₃, *J. Phys. Chem. Solids*, 1965, **26**, p 1805-1816
- J. Walczak and P. Tabero, Studies on the System Al₂O₅-V₂O₅-MoO₃, J. Therm. Anal., 1990, 36, p 2173-2176
- J. Walczak, P. Tabero, and E. Filipek, Synthesis of AlVMoO₇, *Thermochim. Acta*, 1996, 275, p 249-257
- K. Knorr, P. Jakubus, G. Dąbrowska, and M. Kurzawa, Crystal Structure Determination of AlVMoO₇ from X-ray Powder Diffraction Data, *J. Solid State Inorg. Chem.*, 1998, **35**, p 519-530
- J. Walczak and P. Tabero, The AlVMoO₇ and Its Certain Properties, Mezhdunarodnaya Konferentsiya Khimiya Tverdogo Tela, Odessa, SSSR, 1990, *Tezisy Dokl.*, Chast II, p 160-161
- M. Kurzawa and G. Dabrowska, Phase Diagram of the AlVO₄–MoO₃ System, *Polish J. Chem.*, 1996, **70**, p 417-422
- M. Kurzawa and G. Dąbrowska, Studies on the AlVMoO₇-V₂O₅ system, J. Therm. Anal. Cal., 1999, 56, p 217-222
- M. Kurzawa and G. Dąbrowska, Phase Equilibria in the System V₉Mo₆O₄₀–AlVMoO₇, J. Therm. Anal. Cal., 1999, 55, p 243-247
- M. Kurzawa and G. Dabrowska, Phase Equilibria in the AlVO₄-Al₂(MoO₄)₃ System, J. Phase Equil., 1997, 18, p 147-151
- M. Kurzawa and G. Dąbrowska, Reactivity of Al₂(MoO₄)₃ with V₂O₅ in the Solid State, *Solid State Ionics*, 1997, **101-103**, p 1189-1193
- O.S. Owen and H.H. Kung, Effect of Cation Reducibility on Oxidative Dehydrogenation of Butane on Orthovanadates, *J. Mol. Catal.*, 1993, **79**, p 265-284
- J. Walczak, J. Ziołkowski, M. Kurzawa, J. Osten-Sacken, and M. Lysio, Studies on the Ferric Oxide (Fe₂O₃)-Vanadium Oxide (V₂O₅) System, *Polish J. Chem.*, 1985, **59**, p 255-262

- 43. Powder Diffraction File, International Center for Diffraction Data, Swarthmore, PA, 1989
- J. Rodriguez-Carrajal, Program FullProf, Version 3.2, Jan 96-LLb-JRC, 1997
- H.M. Rietveld, Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement, *Acta Crystallogr.*, 1967, 22, p 151-152
- H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Crystallogr., 1969, 2, p 65-71
- R.A. Young, *The Rietveld Method*, International Union of Crystallography, Oxford University Press, 1993
- Z. Kluz and J. Waclawska, Precise Determination of Powder Density, *Roczniki Chemii*, 1974, 49, p 839
- R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, *Acta Crystallogr. A*, 1976, **32**, p 751-767
- D.A. Stephenson and P.B. Moore, Crystal Structure of Grandidierite (Mg, Fe)Al₃SiBO₉, *Acta Crystallogr. B*, 1968, 24, p 1518-1522
- T. Araki, J.J. Finney, and T. Zoltai, The Crystal Structure of Augelite, Am. Mineral., 1968, 53, p 1096-1103

- C.W. Burnham and M.J. Buerger, Refinement of the Crystal Structure of Andalusite, Z. Kristallogr., 1961, 115, p 269-290
- M. Kurzawa, Infrared Spectra of FeVMoO₇ and Fe₄V₂. Mo₃O₂₀, *J. Mater. Sci. Lett.*, 1992, **11**, p 976-979
- A.E. Lavat, M.C. Grasselli, and E.J. Baran, The IR Spectra of the (Cr_xFe_{1-x})VO₄ Phases, *J. Solid State Chem.*, 1989, 78, p 206-208
- D.I. Roncaglia, I.L. Botto, and E.J. Baran, Characterization of a Low-Temperature Form of InVO₄, *J. Solid State Chem.*, 1986, 62, p 11-15
- E. Filipek, J. Walczak, and P. Tabero, Synthesis and Some Properties of the Phase Cr₂V₄O₁₃, *J. Alloys Compd.*, 1998, 265, p 121-124
- 57. P. Tarte, Infra-red Spectra of Inorganic Aluminates and Characteristic Vibrational Frequencies of AlO₄ Tetrahedra and AlO₆ Octahedra, *Spectrochim. Acta*, 1967, **23A**, p 2127-2143
- C.J. Serna, J.L. Rendon, and J.E. Iglesias, Infrared Surface Modes in Corundum-Type Microcrystalline Oxides, *Spectrochim. Acta*, 1982, **38A**, p 797-806